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Abstract

Pseudomonas aeruginosa and SARY-2 are two of the world's most hazardous diseases. Treatments that targ
enzyme or protein could be more successful and efficient. In this study, iminoguanidine derivatives were tre¢
combination of five [5] omputational assessments in the:QBAR, homology modeling, docking simulation, ADME
evaluation, and molecular dynamics simulations [MDs simulations]. A dataset of 25 iminoguanidine compounds v
in the QSAR analysis, giving a statistically robust dighly predictive model. The created model has been thorou
validated and meets various statistical parameter thresholds. The interactions between Chloroquine and Azithr
potentially and commonly used antimalarial and antibacterial medicatiwhthe postulated iminoguanidine derivativ
with the SARSCoV-2 main nucleocapsid phosphoprotein were investigated using the docking simulation. The ¢
data demonstrate that the novel compound 18 has a high level of stability in theCRARSacive site as well as a hig}
binding affinity for the heme oxygenase receptor. The rules of five, rule of two, toxicity, and metabolism were |
screen these compounds for suitable fragments and pharmacological properties. Predictions of pharmpapegiics
suggested that compound 18 could be a promising therapeutic candidate for Pseudomonas aeruginosaGoMSAR
Keywords: QSAR, Homology modelling, docking simulation, ADMET, MDs Simulations, Cé\dd Pseudomona:

aeruginosa, and iminoguanididerivatives.
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Introduction
The coronavirus disease pandemic (cel®d has wreaked
havoc on global supply systems, resulting in a dramatic

decline in global crude oil prices, global stock, and financial

market volatility, largescale cancellations of sporting and

entertainment evest and restrictions on largeale

migrations of people in numerous countries, and

intercontinental travel bans and restrictions have been
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imposed on key flight routes around the w@fli SARS was
declared eradicated in July 2003, although the risk of
pandemic SARSCoV reemergence remaing]. The new
SARS strain (SARE0V-2) is more virulent than the one that
caused the 2003 and 2019 aetikg 3]. This recent epidemic

of a new strain of Coronavirus (SARSV-2) has caused
deaths around the worlf]. High temperature, malaise,
myalgia, headache, ngroductive coughdiarrhoea and
shivering are among the symptom8]. With over
112,305,539 confirmed and 2,486,641 death

documented so far (https://coronavirus.jhu.edu/map.html),

cases

the number of confirmed and death cases is increasing daily.
Pseudomonas aeruginosa @ruginosa) on other hand is a
virulent opportunistic pathogethat needs iron to survive
[5,6]. The heme assimilation system (Has) and Pseudomonas
heme uptake (Phu) systems allow Pseudomonas aeruginosa
to obtain iron from hemg7]. Pseudomonas aeruginosa have
evolved powerful sensing and integrating energy systems t
sense critical environmental conditions and alter virulence
gene expression to allow infection to succd&fl This
bacterial is a primary cause of death in cystic fibrosis patients
with persistent bronchitis, infects cancer patients who are
malnourished and is one of the most common causative
organisms causing ventilatassociated pneumonia and
nosocomial bacterem[&]. The attributable mortality rate of

P. aeruginosa is very high. Since the COMI® pandemic,
treating nosocomial ventilat@rssociatedpneumonia has
become crucial, particularly when early investigations have
identified P. aeruginosa as one of the most common bacterial
infections in COVID19 patientd9-11]. These diseases can
evolve novel resistance mechanisms and can pass genetic
materials on to other diseases, allowing them to develop
resistance to drugs as w§ll2]. Some SARSCoV-2 entry

and replication inhibitors have been identified in early studies
[13]. The multifunctional protein nucleoprotein (NP) is
involved in many aspects of the viral life cycle, including
viral replication, transcription, RNA encapsidation, the
mobilization of ribonucleoprotein complexes to viral budding
sites, and the inhibitioof the host cell interferon response
[14]. The nucleocapsid phosphoprotein and heme oxygenase,
respectively, are essential for viral and bacterial replication.

Inhibiting SARCoV-2 and P. aeruginosa via the

nucleocapsid phosphoprotein and heme oxygeradd be a
lucrative drug target. The activity of the nucleocapsid
phosphoprotein and heme oxygenase could be inhibited,
preventing virus and bacterial replication inside infected
cells. StructureBased Drug Design (SBDD), a direct design
that is used whethe target's spatial structure is known, and
Ligand Based Drug Design (LBDD), an indirect design used
when the target's structure is unknown, are the two major
methodologies and strategies used in Compéditded Drug
Design (CADD)[15]. Molecular docking ad denovo design

are the two broad categories of SBDD.the desired
molecular target can be isolated and crystallized, the
molecular docking process is followdd6]. It's best to
crystallize the protein with a ligand (cocrystal ligand), as this
aids inthe identification of the binding [active] sif&7]. A
binding site is a region of a protein that has the size, geometry,
and functionalities that the ligand requires. This aids in the
analysis of liganéhctivesite amino acid interactior$8].

The knowedge of analog molecules that bind to a biological
target of interest is used in Ligafhsed Drug Design
(LBDD) [19].

pharmacophore model,

These analogs are used to create a
which specifies the structural
characteristics that a molecule must have to bind to its target
[20]. Quantitative Structurdctivity Relationship (QSAR) is
another method for determining a link betweke calculated
properties of molecules and experimentally determined
biological activity[21].

The strict in silico (computealided drug design) instructions
can help prevent the spread of these diseases if they are
followed. In silico (computeaided dug design) forecasts, on
the other hand, are gaining popularity in the field of drug
evaluation. As a result of this in silico approach, several
pharmacological inhibitors have been identifigt?]. The
computeraided drug design [CADD] (i.e., Quantitativ
structural activityrelationship, molecular docking, molecular
dynamics simulations, and ADMET) can help in screening
out the few drugs in the treatment of these disef®:24.
Many previous studies have attempted to identify drug targets
for an infedious disease like Cowtl9 and Pseudomonas
aeruginosa using QSAR, CoMFA, ADMET, and molecular
dynamics simulationf25,2§, comparative genomicsulti-

omics approach, or subtractive genomics approach, and have
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been successful in identifying a significant number of
potential drug targetR7].

We use quantitative structueetivity relationship (QSAR)
modellingto assess a variety of iminoguanidine derivatives
as potential P. aeruginodherapeutics in this study. By
optimizing and confirming the relationship between a
substance and its chemical properties, this strategy is one of
the most versatile and effective methodologies in the field of
drug design and molecularodelling[28]. We use molecular
docking on the drug lik@rotein complex to find the binding
site, as well as the orientation pose of the drugs like with the
receptor. Molecular dynamics (MD) simulations of the drug
like-protein complex are undertaken to establish that the
complex generated by molecular docking is stable in the
water solvent. MD simulation trajectories are used to see the
complex's binding energy interactions. The variety of
computational

techniques, such as QSAR, molecular

docking, ADMET, and MD simulationss expected to not
only provide a better understanding of complex interactions
but also to have significant implications for the development

of more potent SAR€0V-2 and P. aeruginosa medications.

Methods

Data gathering and analysis of the protein domairfiamily

The inhibitor activities of 25 iminoguanidine derivatives
against P. aeruginosa were gathered from the PubChem
database with the accession number AID_1315A123D
structures were created and built by the MarvinView program
to anticipate the link between activity and various parameters
and to develop a multiple linear regression mod@lable S1
shows the architectures of the compounds investigated
together vith their activity pMIGo (pMIC50 =
(MIC50)) values.

-Log

Table S1.The 2D structures of the 25 iminoguanidine derivatives with their docking binding scores.

Cpd No. PubChem access number AID_131512 -LogMIC =0 Binding affinity (kcal/mol)
Structures pMICso CoV-19 PA
1 HoHooy 1.69019608 -5.6 -6.4
H Y
HN:*T//N\N)\@\
Y Cl
H H H H
2 Hy-H y o me 2.08278537 -5.5 -6.4
Hy— N N
' N7 X
" W
H I H
3 y ’ oH 2.089905111 -6.1 -6.4
HNYN\N/ H
aNH H H
H
4 H 1.997823081 -5.5 -6.4
H MH
H (6]
HN /N\N/ H
N
HOH Oy H
H
5 H‘N/H hooM oH 1.862131379 -5.8 -6.4
H
WA Y@o
H
Hoo H
6 H 2.117933835 -5.6 -6.7
H F  H. _H
N
H /N\N/)\'}I,H
H H H
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7 1.684845362 -6.5 -7.9
8 1.719331287 -5.8 -6.4
9 1.674861141 -5.6 -6.7
10 1.718501689 -6.3 -6.9
11 H 2.053078443 -5.6 -6.1
H Ho.
12 1.506505032 -6.6 -7.8
13 H 2.209515015 -5.7 -6.6
F H H. _H
N
Hj@((/N\N/)\N,H
H H H
14 H H H 1.720159303 -55 -6.2
o
H
Br H _N._
H™H
H
15 H 1.365487985 -7.1 -7.8
H i H
H ‘ o
N‘,N HHj\@
H\l\‘l)\l\‘l H
H H
16 H H H 1.699837726 -5.9 -6.6
H
\N/NY,\IJ\
H
H Br H’N\
\ H
17 H H H 1.90579588 -5.3 -6.8
{ H
N N7
H Y
H\
TR TR H
Br
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PubChem CID447043

18 1.771587481 -7.4 -7.9
19 Ho 3.056904851 -5.9 -6.6
Ho-H H H
H\N)\\N,N\ 0
H H H H
20 H H 2.610660163 -5.6 -6.7
\N/H H 0
H‘NJ\\N/N
! H
H Hoo
21 Heg H 2.875061263 -5.7 -6.5
H H H’E/\
J_ H
/N\N ’\\l
H Lok H
H - -
22 gt 2.127104798 5.8 6.4
VT R
H
\’,“/(\N’N H
H b H
Hoy
23 E 1.823474229 -6 -6.5
H H o HH
HI@@/WAN,H
H H H
24 H H H 1.710117365 -6.1 -6.5
N N.
Br N/N\
H H H/N\H
H
25 cl 1.509202522 -5.6 -6.8
Cl H H\ ,H
N
H /N\N//kN,H
H H H
Chloroquine |  H H O e -4.7 -5.7
PubChem CID: 2719
Zithromax | a4 A | e -7.7
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CoV-19 = Covid19; PA = Pseudomonas aeruginosa

A quantitative structurahctivity relationship (QSAR) is a
mathematical relationship that links chemical structure to
pharmacological activity or another property for a group of
compounds. A QSAR equation, as defined by Crum Brown
and Frasef29], is:
glAl

€ + g2A2 + g3A3 +é& +

Equation 1

Whereanrepresents one constitutional [structural] property,

gn
activity/Biological activity. Mathematically the equation can

and i s its coefficient

be represented as

Y =b1X1 + b2X2
Equation 2

Density function thegr (DFT) at the B3LYP/&1+G (d,p)

level was used to obtain the lowest ligand structure energies

using Gaussian09 softwal@0]. For 2D-QSAR, PaDEL

Descri pt or 0 s[31wab tisadato ealculat2 th@ 0

descriptors of the chemicals employed in this study. The

+ b3X3 é bnXn

molecules were divided into training sets and test sets using a
random percentage of 30% test set from the QSARINS
A crati

phase in the development of a QSAR model is model

software v2.2.432] after descriptors selection.

validation. The models were evaluated using a variety of
methodologies and statistical factors. According to Galbraith
and Tropshd33], the suggested QSAR model is predictive

since it meets the follow@criteria:"Y ™,Y T,

™, TV U PP YT L U

Roy [34] provided another set of measure®n metrics, to

p® v Roy and

further refine the prediction capabilities of the existing QSAR
models. These measurements determine pheximity
between observed and predicted acti{@y,39.

Homology Modelling

The amino acid sequence (query protein) of the nucleocapsid
phosphoprotein (severe acute respiratory syndrome
coronavirus 2) NCBI accession ID: QLI52053 and heme
oxygenase (Pseudomonas aeruginosa PAO1) NCBI accession
ID: NP_249363, respectively, were obtained from the
National Centre for Biotechnology Information
(www.ncbi.nlm.nh.gov). Nucleocapsid phosphoprotein and

heme oxygenase sequence were BLAST searched against the

Protein Data Bank to find a relevant protein with a
comparable structure to the query protein. The CLUSTALW
[37], be
http://www2.ebi.ac.uk/CLUSTALW, was used to align the

sequence of the human sapiens receptor with that of the target

program which can found at

sequence. Using the MODELLER program v9.29, a total

gf rb Anodels were created. The discrete optimized protein
enagy [DOPE] score was used to rank and grade the protein
model generated by the MODELLER. One of the five models
with ¢he lowest DOP B sEorespwhsachosen and dvalugtedaisinig
the ERRAT and RAMPAGE servers. The Ramachandran
plot, the PROCHECK ser
(https:M3ervicesn.mbi.ucla.edu/PROCHECK/), was used to

characterize the structural properties of the modeling protein.

acquired  using

Using Discovery studio 2020, the best model was chosen for
energy minimization to reduce sidbain clashes, add polar
hydrogen, ani was then employed in docking and molecular
dynamics simulations.

Docking Simulations

To find the binding site of the 25 selected iminoguanidine
derivatives into the built homology model protein described
above, molecular docking simulation is perfornimdusing
AutoDock vina with PyRx packages v 3] to evaluate the
interaction of compounds with the designed protein. The
homology model proteitigand complexes were compared
with the standard drugs in terms of binding affinity and bond
residues.

Pharmacokinetics properties and Lipophilicity analysis
Predicting ADMET characteristics is a crucial study for
avoiding medication failure in clinical tria[8]. Predictions

of pharmacokinetics and bioavailability are important tools in
the drug developmme process and should be taken into
account when creating a new drug. The SwissADME web
application[40]. which is freely available online, was used to
examine the pharmacokinetics of selected compounds.
Another software used to calculate lipophilicity is the Data
warrior packag¢41].

Molecular Dynamics Simulations (MDS)

phases with the corresponding receptors. The modelled
receptorligand complexes were simulated using the NAMD
2.13 Win64multicore version[42], which included the
CHARMM 36 force field[43] and the TIP3P water model.
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Several cetime approaches were applied, with afs2
integration time step. The CHARMIGUI web servicd44]

was used to produce ligand topology and parameter files, and
psf files of modelled receptofligand complexes and
neutralize the system with potassium (K+) and chloride) (Cl
ions. The simulation/production [NPT] ran foins with 5000
steps of minimization [NVT]. The temperature was kept
constant at 303.15 K using a Langevin thermostéte
system's perimeter was surrounded by periodic boundary
conditions. Visual molecular dynamics (VMO¥5 was

employed for the visualization of the complex.

Results And Discussion

To determine the key structural features of iminoguanidine
derivatives against SARSoV-2 virus and P. aeruginosa, a
combination of QSAR analysis, docking simulation,
pharmacokinetics, and molecular dynamics simulations were
used in the current study. QSARas created utilizing a

genetic algorithm implemented in the QSARINS software

[32]. as a descriptor screening strategy, followed by MLR
analysis from a huge pool of descriptp4§]. The statistical
parameters to evaluate the quality of these QSAR madels
summarized imMable S2 and the best QSAR models among
several generated models are shown below (Model 1). The
genetic approximation (GA) techniques yield two descriptors
with substantial relationships to inhibitory activity pMiCin

the GAMLR model of the training set, the following
descriptors were chosen: AATS8p = Average Bidiareau
autocorrelation- lag 8 / weighted by polarizabilities and
TPSA = Sum of solvent accessible surface areas of atoms
with the absolute value of partial charges gretii@n or equal

0.2. The model GAVLR statistical characteristics revealed
the

experimental and estimated values of the training data set.

approximately 91 percent correlation between
The strong R= 0.91 regression coefficient, low standard
deviation (RMSE = 0.13), and value of the Fischer test (F =
75.7) all indicate that the developed model is statistically

significant.

Table S2.Model validation parameters and thisireshold values

Validation criteria Model scores Threshold Remarks
Fittings criteria

R? 0.9099 RRO 0.6 Pass
R 0.8978 R%4O 0. 5 Pass
R%-R% 0.0120 R2tiR2adj ' 0 .| Pass
LOF 0.0269 Low Pass
Kxx 0.3217 Low Pass
Delta K 0.3036 Low Pass
RMSE 0.1276 RMSEy ' R MS E Pass
MAE ¢ 0.1019 close to zero Pass
RSS 0.2932 Pass
CCGy 0.9528 ccc tr O 0. 8]Pass
S 0.1398 Low Pass
F 75.6983 Large Pass
Internal validation criteria

Qoo 0.8413 Q2LOO O 0.5 |Pass
R%-Q?00 0.0685 R2iQ2LO0O O 0.]Pass
RMSE. 0.1693 Close to zero Pass
MAE ¢y 0.1323 Close to zero Pass
PRESS, 0.5161 Pass
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CCCy 0.9235 CCC cv O 0. 8]Pass
Q2LMO 0.8055 Q2LMO O 0.6 Pass
R2Yscr 0.1156 R2Yscr R2 Pass
Q?Yscr -0.3777 Q2Yscr Q2 L| Pass
RMSE AV Yscr 0.3988 Pass
R2Yrnd 0.1174 R2Yscr R2t | Pass
Q?Yrnd -0.3688 Q2Yscr Q2 L| Pass
External validation criteria

RMSEcx 0.3241 Close to zero Pass
MAE ex; 0.2528 Close to zero Pass
PRESS&« 0.6301 Pass
RZext 0.3768 R2ext O 0.6 Pass
Q2-F1 0.1153 Pass
Q2-F2 -0.2748 Pass
Q2-F3 0.4188 Pass
r2m aver. 0.2307 Pass
r2m delta 0.0813 Pass
Predictions by LOO:

Exp(x) vs. Pred(y): R2 = 0.8546; R'20 = 0.8525; k': 1.0040; Clos'= 0.0024; r'2m = 0.8156
Pred(x) vs. Exp(y): R2 = 0.8546; R20 = 0.8440; k = 0.9887; Clos = 0.0123; r2m = 0.7669
External predictions by model equation:

Exp(x) vs. Pred(y): R2 = 0.3768; R'20 = 0.2984; k' = 1.0697; Clos' = 0.2081; r'2m = 0.2713
Pred(x) vs. Exp(y): R2 = 0.3768; R20 = 0.1311; k = 0.9199; Clos = 0.6522; r2m = 0.1900

pMIC50 = 2.9147- 1.4756 [AATS8p] + 0.0074 [TP&] ---
This model's internal prediction power is showkiig. 1with
it
value of 0.1019We used the crosglidation method (CV)
with the

|l ess Friedmands | ack of
leaveoneout (LOO) procedure to test the
performance of the genetic approximation (GA) and the
validity of our choice of descriptors selected by multiple
linear regression (MLR). One compound is removethfthe

data set in this procedure, and the network is trained with the
remaining compounds to predict the discarded compound.
The procedure is repeated for each compound in the data set
in turn[21]. The results of the internal validatiof&able S2)

show that the crosgalidation (Leave one out) approach
produced a good correlation, indicating that the QSAR model
is unaffected by chance correlation. This provides a
preliminary indication of the proposed QSAR model's

stability and robustness. Thergndomization method was

used to validate the QSAR model, and the obtained value of
the randomized model's correlation coefficient is less than
that of the norrandomized modellFig. S1) and their
(iffel@rfe¢ cReicgoeater thanf0.5,dndiating that theagiv. M A
QSAR model is considered robust and not the result of
random accident. The plot of experimental versus calculated
activity values using the GMLR model is shown irFig. 2,

which were used for evaluating their generalization
capacities.

According to theGFA-MLR equation for external validation
criteria, the test set's predicted pMi€alues are as follows:
The RMSE:between the experimental and predicted pIC
values was 0.3241 with a low mean absolute error (MAE
of 0.2528, indicating high predability. Other parameters
such as PRESS R%x, Q2F1, Q2F2, Q2F3, CCGy, %m
aver., and %, delta met the threshold criteria prove that the

model is robust and statistically significdiiable S2)
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Exp. endpoint vs. Pred. by model eqg. * Prediction

3,144 <

Pred. by model eq.

2.255

2.033

1.810

1.583

1.385 T T T T T T T 1
1.385 1.588 1.810 2.033 2.255 2.477 2. 700 2.922 3144

Exp. endpoint

Fig. 1. Sort plot of experimental pMIC50 versus predicted pMIC50 values of model 1.

O R2 Ysor

® Q2 rscr
Kooy ws. R2 Yscr and Q2 Yscr
R2 ¥Yscr and Q2 Yscr @ < Mod. R2

® Mod., Q2

_model R2 ¥

<o
e (model Q2

=1
-

o4 000

Fig. S1 Scatter plot of the ¥andomization based on QSAR model.

Exp. endpoint vs. Pred. by LOO * Prediction

Pred. by LOO

3.121
2.870
2,620
2,359

2,118

=
1.616 e bt
<

1.365— T T T T 1
1.365 1816 1.867 2.118 2.369 2.620 2.870 3.121 3.372
AATSSD TPSA

Exp. endpoint

Fig. 2 The plot of GAMLR predicted activity by LOO versus experimental endpoint activity.
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In Fig. S2 and S3the antiP. aeruginosa residuals of internal
and external predictions are displayed against the predicted
endpoint. The estimated correlation coefficients between
experimental and predicted pMiCvalues (Predictions by
LOO) with intercept (%) and without intercept (i) were
0.8525 and 0.8440, while external predictions by the model
equation R, with intercept and R, without intercept are
0.2984 0.1311,
for the internal and external validation showTable S2are

and respectiv
within the specified ranges of 0.85 and 1[4%]. The values

of rP’m = 0.7669 and #n = 0.8156 were found to be in the
acceptable rangg34], thereby indicating the good external
predictability of the QSAR model. The application domain

used to screen chemicalgl8]. A basic measureof a
chemical's distance from the model's applicability domain is
its leverage(Table S3). The warning value (h* = 0.5) is
higher than the leverage (H) values of all the compounds in
the training and test sets except compoundFi§. 3). The
training set is extremely representative, and none of the
chemicals has a significant influence on the model space.
Bdcause & | is odifferenh erfly adrugirosa adtivink a
mechanism, compound number 3, and 23 standardized
residuals were slightly biggehdn 2.5 standard deviation

( 2. 5 U(fig. 3)@hicimip mouwithdn the 9

cut-off of the threshold value (0.5) could be due to incorrect

uni ts

experimental input data or its afli aeruginosa activity

(AD) of a QSAR model must be determined before it can be  mechanism.
I.DDD?
D.?SD%
D.SDDE
E -
0.250—5 = - -
I>
i e = &
D.DDU—‘E L J
E| =T =
E <> L= L=
0.250—; =
ﬂ.SDU—E
0.750—3
-1.000 ] T T T T T T
1.517 1.720 1.924 2.127 2.331 2.534 2.738 2.941

AATSEp TPSA

1
3.14949
Pred. endpoint

Fig. S2.The plot of residuals versus experimental values of the training set and test set.

Pred. endpoint vs. Residuals

Residuals

1.000—
0.750
0.500

0.250

< Training
* Prediction

0.000 5
-0.250—
-0.500

-0. 750

-1.000—

T T
1.518 1.750 1.982 2.213

AATSERp TPSA

T T T 1
2.6877 2.909 3.140 3.372

Pred. endpoint

Fig. S3.The plot of residuals versus predicted endpoint of the training set and test set.
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-3.750

-5.000—
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Table S3.Experimental dataset employed for QSAR study along with predicted and @leh@y, values against pseudomonas

aeruginosa.
ID Cpd No. Status Observed activity Pred. by model eq. HAT i/i (h*=0.5000)
1 2 Training 2.0828 1.9580 0.2232
2 3 Prediction 2.0899 2.5087 0.1811
3 4 Training 1.9978 1.9328 0.0595
4 5 Training 1.8621 1.8585 0.1558
5 6 Training 2.1179 2.3176 0.1512
6 7 Training 1.6848 1.6380 0.0835
7 8 Training 1.7193 1.6843 0.0790
8 9 Training 1.6749 1.7950 0.0634
9 10 Training 1.7185 1.9480 0.1803
10 |11 Training 2.0531 2.0657 0.1808
11 |12 Training 1.5065 1.5996 0.1544
12 | 13 Prediction 2.2095 2.4197 0.1616
13 |14 Prediction 1.7202 1.6438 0.0794
14 | 15 Training 1.3655 1.5327 0.1834
15 16 Training 1.6998 1.6462 0.1494
16 17 Training 1.9058 1.8505 0.0940
17 18 Training 1.7716 1.6514 0.0785
18 19 Training 3.0569 3.1444 0.7223
19 | 20 Prediction 2.6107 2.5951 0.2160
20 |21 Training 2.8751 2.5885 0.2146
21 | 22 Prediction 21271 1.9383 0.0856
22 | 23 Prediction 1.8235 2.4308 0.1659
23 | 24 Training 1.7101 1.5837 0.1005
24 | 25 Training 1.5092 1.5169 0.1261
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Homology modelling and Docking interactions

The comparativanodelling of the severe acute respiratory
syndrome and Pseudomonas aeruginosa PAO1 was built
using crystal structures of nucleocapsid phosphoprotein
(Accession ID: QLI52052) and heme oxygenase (Accession
ID: NP_249363) which were retrieved from the NCBI. The
abovementioned virus and bacterial host components could
be used as ideal molecular targets for developing novel and
effective drug candidates against SARV-2 and gram
negative bacteria due to their fundamental role in viral and
bacterial transmission, repéitton, and pathogenesis. Then
the BLAST program was used to search for a suitable
template in Brookhaven Protein Data Bank (PDB) format.
The PDB entries: 1ssk_A, 6m3m_A, 6wji_A, 6wzq_A, and

6yun_A as a template for severe acute respiratory syndrome
and PDBentries: 1j77_A and 1sk7_ A were selected as a
template for Pseudomonas aeruginosa. They were found to
show good percentage identity, query cover, and loxalie
score, and then refined via loodelling MODELLER 9.25

was used to examine the structuaatl sequence similarities
between the various templates to choose the best acceptable
template for our query sequence among the PDB structures.
We finally pick 6wiji over the rest because of its percentage
identity of 100%, 28% query cover, andvBlue scoe of
3x1082 The homology modelling for heme oxygenase
yielded a similarity identity of 100%, which was confirmed
by a percentage identity matrix of PDB code: 1j77. The
MODELLER 9.25 and Chimera v1.10.2

Fig.4: 3D model structures superimposed (A) nucleocapsid phosphoprotein: (severe acute respiratory syndrome) (B) heme oxygena

(Pseudomonas aeruginosa PAO1).

were used together for model building and alignment and the
best moeél (with the lowest normalized DOPE score) was
chosen. As demonstrated kig. 4, the target and template
proteins sequences of SAR®V-2 and Pseudomonas
aeruginosa were aligned, respectively.

With all the obtainable data and results, the aligned sequence
of the modelled SARSCoV-2 receptor and Pseudomonas
aeruginosa receptor genexatby using align2d script in
MODELLER 9.25 with their corresponding template are
presented inFig. 5A and Fig. 5B, respectively. Five (5)

models were built based on the alignm@ratble 1 and Table

2).

The predicted model with the least DOPE score wasem

for molecular docking simulation.

FromTable 1 and 2 the fourth (4) and third (3') predicted
models were selected for further analysis. The DOPE score
profile of the selectedmodelled SARSCoV-2 and
Pseudomonas aeruginosa proteiif@ble 1 and Table 2are

presented ifrig. S6 and Fig. S7respectively.
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_aln.pos 10 20 30 40 50 60
BWjiA
target MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPR
_consrvd

_alnp 70 80 90 100 110 120 130
6WjiA
target G@VPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATE
_consrvd

_aln.pos140 150 160 170 180 190 200
BWjiA
target GALNTPKDHIGRNPANNAAIVLQLPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRG
_consrvd

_aln.pos 210 220 230 240 250 260 270
BWjiA KPRQKRTATKAYNVTQ
target TSPARMAGNGGDAALALLLIDRLNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYNVTQ

consrvd Fekkdkkkkdkkkkkkk

_aln.pos 280 290 300 310 320 330 340

6WjiA  AFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAFASAFFGMSRIGMEVTPSGTWLTYTGAIKLD
target AFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLD
7o) 3 /o Iclciliclodeioleilooholtohololoioloioleeioliclotiolotioioioioloioiohiohicoiciiaiois

_aln.pos 350 360 370 380 39@00
6wjiA DKDPNFKDQVILLNKHIDAYKTFP
target DKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDDFSKQLQ
_COﬂSI'Vd" il

_aln.p 410
BWjIA -
target QSMSSADSTQA
_consrvd
A

_aln.pos 10 20 30 40 50 60
TS v/ G— NLRSQRLNLLTNEPHQRLESL\KSKEPFASRDNFARFVAAQYLFQHDLEPLYRNEAL

gseq MDTLAPESTRQNLRSQRLNLLTNEPHQRLESLVKSKEPFASRDNFARFVAAQYLFQHDLEPLYRNEAL
_COI"ISI’Vd TR RN RN R AN RN R RN RRNRN RN R RANN RN 4 TRRARTRRNRR

_anp 70 80 90 100 110120 130
1sk7A  ARLFPGLASRARDDAARADLADLGHPVPEGDQSVREADLSLAEALGWLFVSEGSKLGAAFLFKKAAAL
gseq ARLFPGLASRARDDAARADLADLGHPVPEGDQSVREADLSLAEALGWLFVSEGSKLGAAFLFKKAAAL

cons rvd kkkkkkkkkkkkkkkhkkkkkkkkhkkhkkkkkkkkkkhkkkkkkkkkkkkkkkkkhkkhkhkkkkkkkkkkkkkk

_aln.pos 140 150 160 170 180 190

1sk7A° ELDENFGARHLAEPEGGRAQGWKSFVAILDGIELNEEEERLAAKGASDAFNRFGDLLERTFA
gseq ELDENFGARHLAEPEGGRAQGWKSFVAILDGIELNEEEERLAAKGASDAFNRFGDLLERTFA
_CONSIv( *rkikink il

B

Fig. 5: Sequence alignment result between (A) SARS/-2 receptor with template 6wji.pdb, (B) Pseudomonas aeruginosa receptor
with template 1j77.
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HAT ifi (h* = 0.500) vs. Pred. by model eq.

Pred. by model eq.

< Training
® Prediction

3. 144 .‘B
2,941
2,733
2.534-] (30
E (2
2.331 @
T T T T T 1
0.308 0.391 0.474 0.557 0.639 0.722

AATS8p TPSA

HAT ifi (h™= = 0.500)

Fig. S4.Insubriagraph for the applicability domain check of the descriptor model for the prediction &f.aagruginosa.

Fig. S5.Plot of LMO validations and ¥crambled models compared with the original model
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Fig. S6.SARSCoV-2 DOPE score profiles for the model and templates
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Fig. S7.Pseudomonas aeruginosa DOPE score profiles for the model and templates

The resulting Ramachandran plot (for nucleocapsid nucleocapsid phosphoprotein 3D model obtained is
phosphoprotein model) suggests that 93.9% of residues satsfactory once more. Only one residue is found in the
angles are in the moffavourableregions, 5.5% residues in forbidden region according to the Ramachandran plot.
the additional allowed regions, 0.3% residues in generously Because the residues in tinefavourableegions are far from
allowed regions, and 0.3% residues in disallowed regions, as the substratdinding domain, they are unlikely to have an
verified by PROCHECK[Fig. 6]. It means that the final impact on liganeprotein bindng simulations.

Table 1: Five SARSCoV-2 models' modeller objective function (molpdf), discrete optimized protein energy (DOPE) score, and
genetic algorithm 341 (GA341) score

Filename molpdf DOPE score GA341 score
target.B99990001.pdb 1769.21606 -15788.35547 1.00000
target.B99990002.pdb 2066.10718 -16054.67480 1.00000
target.B99990003.pdb 1873.94128 -16079.09082 1.00000
target.B99990004.pdb 1802.19812 -16286.84668 1.00000
target.B99990005.pdb 1915.55005 -15795.42773 1.00000

The heme oxygenase modelFig. 7 suggests that 94.9% residues in most favored regions, 5.1% residues in additional allowec
regions, no residues in generously allowed and disallowed regions. The PROCHECK result revealed that the predicte&amodel f
higher quality protein fold, implyinghat it can be used for subsequeéatking experimentgt9].

The finding of liganebinding sites is frequently the first step

in determining protein function and therapeutic developm&@jt Blind docking was performed to bind ligands and the model
structures. PyRx (Autodock vina) predicted the active site of the nucleocapsid phosphoprotein and heme oxygenase eceptor
greater average precision in our investigation. All of the compounds faend to have a substantial inhibitory effect by entirely

occupying the target proteiréstive area¢Fig. 8 and 9).
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Table 2 Five Pseudomonas aeruginosa models' modeller objective function (molpdf), discrete optimized protein energy (DOPE

score, andjenetic algorithm 341 (GA341) score.

Filename molpdf DOPE score GA341 score
gseq.B99990001.pdb 814.45660 -21988.66797 1.00000
gseq.B99990002.pdb 759.40881 -22353.58008 1.00000
gseq.B99990003.pdb 802.71722 -22495.24805 1.00000
gseq.B99990004.pdb 710.66162 -22135.44141 1.00000
gseq.B99990005.pdb 698.06323 -22239.36523 1.00000

PROCHECK

Ramachandran Plot

Psi (degrees)

-1354" | - — | :—“ -

-
e | |
L . = = N 3
=
y
-180 -135 -40 -45 0 45 a0 135 180
Phi (degrees)
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Residues in most favoared regions [A B1) 325 o3 o%.

Residues in additional allowed regions [a.b1.p) 149 5.5%.

Residues in generously allowed regions [-a.~b.-1_~p] 1 03

Residues. in disallowed regions 1 03w

Nismber of non-glycine and noan- proline ressdses ;3-1“6 ]E(]U‘?&

MNimmber of end-residues ¢excl. Gly and Prop 2

HNismber of ghycine residues (shown as triangles) 43

MNumiber of proline residues 28

Total nuember of residues :!.-]“Q

Based on an analysis of 118 af st of at least Z.00

and B-Factor oo greater than 200, a good qealiy modol woslkd be expecied
40 hanee: over D09 In the most fnvomred regices.

saves_01ps

Fig. 6: PROCHECK generated a Ramachandran plot of the distribution of nucleocapsid phosphoprotein.

As shown inTable S1, binding affinity values for target (-7.7 kcal/mol) for P. aeruginosa inhibitor, respectively. As a
protein range between4(7 and-7.9 kcal/mol) for both result, only the molecule (compound 18) with the strongest
SARSCoV-2 and P. aeruginosa inhibitors. However, when  binding affinity was visualized with the standards and
compared to the standards, compound 18 has the highest examinedin the Molecular Operating Environment (MOE,
binding affinity of-7.7 and-7.9 kcal/mol over Chlarquine ¢ 2015), as shown iRig. 8 and 9 respectively

4.7 kcal/mol) for SARSCoV-2 inhibitor, and over Zithromax
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PROCHECK
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Fig. 7. PROCHECK generated a Ramachandran plot of the distribution of heme oxygenase

B
QO polar ~vsidechainacceptor O solventresidue  ©© arene-arene
O acidic  + sidechain donor (2 metal complex EH areneH
Q basic  --»backbone acceptor - solventcontad @+ arene-cation
Q greasy = backbone donor ~— metaliion cortac
proximity . ligand Orecepmr
contour exposure exposure

Fig. 8: (A) Compound 18 and (B) Chloroquine interact at the binding sites ohtlakellingprotein in 2D docking poses. Compound 18
has a binding affinity of7.4 kcal/mol. Chloroquine (binding affinitg.7 kcal/mol).
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The ligand (compound 18) created two hydrogen bonds with
one residue in the nucleocapsid phospbtgin target:
Leu331 with a distance of 3.11 AL(4 kcal/mol) and 3.25 A
(-0.7 kcal/mol) indicating a robust and stable contact between
this ligand and the major nucleocapsid phosphoprotein active
site(Fig. 8A). However, as shown iRig. 8A, one amino acid,
GIn260 is involved in &ing interactions with the same
compound. Docking studies for the control dfGiploroquine

(Fig. 8B)] demonstrate four hydrogen bond interactions. At a
distance of 3.57 A and internal energy-6f7 kcal/mol, a
hydrogen bond was discovered between the oxygen group
GIn289 and the C18 of the ligand. At a distance of 3.56 and
3.47 A, another hydrogen bond was found between GIn289 (
1 kcal/mol) and Thrl73 -0.9 kcal/mol),

respectively.

Between [le292 and therénhg, alast prhydrogen bond was
discovered with a distance of 3.90 A and internal energy of
1 kcal/mol.Fig. 9A and 9Bshows docking interactions with
two different compounds (18 and Azithromycin). Docking
studies for the high active compound 18 is stabilizgd b
hydrophobic contacts with the residues Lys34, Pro38, Phe39,
Val33, and Leul29 as shown iRig.8A, compound 18
exhibited one hydrogen bond interaction, which was detected
at a distance of 3.23 A and internal energylo kcal/mol

the Mroup Glb2 While
(Azithromycin (Fig. 8B)) shows hydrogen bond donor with
Ala79, Glul49, and Ser77 residues, with a distance of 7.03,
3.71, 3.53 A and internal energy 6%8,-1.2,-0.6 kcal/mol,

respectively

between amino acid.

O polar »sidechainacceptor O solventresidue @& arene-arene
O acidic  «+- sidechain donor metal complex ©H areneH
O basic - packbone acceptor solvent contact @+ arene-cafon
(O greasy = backbone donor - metalfion contact

proximity ligand Oreceph:r

contour expasure expasure

Fig. 9: (A) Compound 18 and (B) Zithromax interact at the binding sites ahtigellingprotein in 2D docking poses. Compound 18

has a binding affinity 0f7.9 kcal/mol. Zithromax (binding affinity7.7 kcal/mol).

Pharmacokinetic Assessment

commonly known as the drug's pharmacokinetic feature

To assess the action of an active chemical in the human body [51]. Drug-likeness and ADMET analysis were performed on

after administration, it is necessary to understand its

absorption, metabolism, excretion, and distribution (ADME),

all of the druglike compounds and standards in our study

(Table S4),with some of them adhering to Lipinski's five
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criteria rule and Veber's tweriteria rule: molecular weight
(acceptable range: 500), number of hydrogen bond donors
(acceptable range: 5), number of hydrogen bond acceptors
(acceptable range: 10) and lipophilicity (expressed as LogP,
acceptable range: 5)TPSA (acceptable range: 140).
Compound 18 and chloroquine both pass the Lipinski ROF
and Veber ROT, except Azithromycin with a high molecular
weight of 748.98, hydrogen bond acceptor of 14, and total
polar surface area of 180.0Bable S4).The fractionhextent

of a medicine dosage that reaches the therapeutic site of
action is known as drug oral bioavailability, and it is
represented quantitatively asPp52]. A probability score of
55% is acceptable, suggesting that it passed the rule of five.
Azithromycin scores 17%, but compound 18 and chloroquine
both score 55%, indicating good bioavailabil{fyable S4).

The synthetic accessibility score ranges from 1 (very easy) to
10 (extremely difficult). The results imable S4show that
compound 18 has a singpl synthesis method than the
standard drugs. A good result for the chemicals in the-drug
likeness with a positive value attribute indicates that the
molecule contains fragments that are commonly seen in
commercial medications. Except for compounds 5, 64117,

and 24, all of the compounds exhibited a positive drug
likeness valueg(Table S5). The drug score combines the
contributions of the partition coefficient, solubility,
molecular weight, drudikeness, and toxicity risk into a
single meaningfupractical valug[53]. It could be used to
assess the medication candidate's potential. The chemical has
a better possibility of becoming a drug candidate when the
drug score is higher. The drug score of compound 18 is higher
than the twereference drugTable S5).This indicates that

compound 18 has medium risk values and could be employed

as a therapeutic molecule. For its mutagenic, tumorigenic,
reproductive effects, and irritating features, the toxicity risk
levels estimated using the Data warrior sofenvare shown as
none, low, and higlfTable S6) The none result represents
that the chemical is drugompatible, while the low and high
values indicate the toxicity degree. Chloroquine shows high
for its mutagenic and irritant, while compound 18 and
Azithromycin show none to all the toxicity effects. The facial
skin, which defends the body from chemical and physical
threats, also keeps the essential medicine dose from reaching
a target organj52]. Because all of the chemicals found in
Table S6have log Kpnegative values, the results reveal that
they are all poorly permeable to the skin. Gastrointestinal (GI)
absorption data are utilized to quantify the absorption and
distribution of these medications. Except for Azithromycin,
which has low absorption, af the compounds are projected
to be efficiently absorbe(iTable S6).For medications that
target the central nervous system, bldodin (BBB)
partitioning and brain distribution are key featuyg4]. The
compounds examined are projected to bel@inpenetrant,
therefore adverse effects may be reduced at this level, except
for Chloroquine that has yes in BBB permeéfable S7).
Cytochromes P450 are essential for metabolizing foreign
substances such as medicifigS]. The ability of druglike
compoung to be eliminated from the body is determined by
the identification of metabolic sites. Table S7 lists some of
the most likely metabolic sites for Cytochromes P450.
Compound 18, which is the compound of interest was found
not to inhibit any of the CYP ismzymes, which means that
this compound may have a lower risk of hepatic toxicity. The
Chloroquine drug inhibits three of the CYP isoenzymes as

shown inTable S7.

TableS4Li pinski s and Veber 6s inhibidrseandfcantrol dugsME anal y si s

Compounds Lipinski rule of five Veber 6s f | %F/Synthetic Alerts

Ligand MW HBA | HBD | MLOGP | TPSA | Rotatable | Bioavailability | Synthetic
bonds Score Accessibility

2 205.26 | 2 2 1.13 80 3 0.55 1.96

3 178.19 | 3 3 0.5 96.99 2 0.55 2.04

4 192.22 | 3 2 0.82 85.99 3 0.55 2.16

5 208.2 4 3 0.1 126.42 | 3 0.55 2.19

6 180.18 | 3 2 1.49 76.76 | 2 0.55 2.14

7 212.25 | 2 2 2.06 76.76 | 2 0.55 2.14
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8 196.64 | 2 2 1.65 76.76 | 2 0.55 2.03
9 196.64 | 2 2 1.65 76.76 | 2 0.55 2.19
10 204.27 | 2 2 1.98 76.76 | 3 0.55 2.07
11 192.22 | 3 2 0.82 85.99 |3 0.55 1.89
12 212.25 | 2 2 2.06 76.76 | 2 0.55 2.14
13 180.18 | 3 2 1.49 76.76 | 2 0.55 1.97
14 241.09 | 2 2 1.8 76.76 | 2 0.55 2.06
15 268.31 | 3 2 2.25 8599 |5 0.55 2.49
16 241.09 | 2 2 1.8 76.76 | 2 0.55 2.28
17 257.09 | 3 3 1.24 96.99 |2 0.55 231
18 238.29 | 2 2 2.55 76.76 |3 0.55 24

19 194.19 | 4 4 -0.04 117.22 | 2 0.55 1.96
20 178.19 | 3 3 0.5 96.99 |2 0.55 1.83
21 178.19 | 3 3 0.5 96.99 |2 0.55 1.84
22 192.22 | 3 2 0.82 85.99 |3 0.55 1.93
23 180.18 | 3 2 1.49 76.76 | 2 0.55 1.98
24 241.09 | 2 2 1.8 76.76 | 2 0.55 2.27
25 231.08 | 2 2 2.22 76.76 | 2 0.55 2.14
Chloroquine 319.87 | 2 1 3.2 28.16 |8 0.55 2.76
Azithromycin (Zithromax) 748.98 | 14 5 -0.44 180.08 | 7 0.17 8.91

Table S5.Lipophilicity, drug score, painalerts, ancfficiency parameters of the 25 iminoguanidine derivatives and the control

drugs.
Cpd No. Druglikeness LE LLE LELP Drug Score PAINS alerts
2 2.7623 0.7956 6.9293 2.2244 0.46 0
3 1411 0.89941 6.9953 1.6984 0.83 1
4 1.3443 0.82293 6.5946 2.1913 0.83 0
5 -3.8616 0.7592 7.3493 1.2536 0.16 0
6 0.25086 0.86765 6.2477 2.2752 0.69 0
7 1.5909 0.69922 5.0872 4.3873 0.48 0
8 1.5916 0.85446 5.6176 2.9016 0.77 0
9 1.5916 0.84906 5.5665 2.92 0.80 0
10 0.9808 0.73167 4.9397 4.1826 0.50 0
11 1.3443 0.77988 6.1553 2.3123 0.83 0
12 1.5909 0.67915 4.8531 4.517 0.30 0
13 0.25086 0.83221 5.912 2.3721 0.76 0
14 -0.19914 0.82881 5.2554 3.1352 0.57 0
15 0.94978 0.53667 4.6025 6.0025 0.38 0
16 -0.19914 0.82269 5.1974 3.1585 0.46 0
17 -0.37901 0.76135 5.5168 2.959 0.30 1
18 1.5909 0.59027 4.2122 5.9846 0.59 0
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19 1411 0.75662 6.5393 1.5621 0.62 0

20 1411 0.81247 6.1714 1.8802 0.86 1

21 1411 0.81023 6.1502 1.8854 0.85 0

22 1.3443 0.75038 5.8543 2.4032 0.79 0

23 0.25086 0.80606 5.6642 2.4491 0.55 0

24 -0.19914 0.80411 5.0213 3.2315 0.48 0

25 1.5916 0.74494 4.5168 4.1417 0.70 0

Chloroquine 6.6327 0.34706 1.5565 11.552 0.25 0

Azithromycin 13.854 0.08837 1.6928 18.749 0.48 0

(Zithromax)

Table S6.Toxicity prediction of the 25 iminoguanidine derivatives and the control drugs

Copd No. Mutagenic Tumorigenic Reproductive Effective Irritant log Kp (cm/s)
1 none none none none | -
2 none high none none -7.13
3 none none none none -6.66
4 none none none none -6.9
5 none none none none -7.68
6 none none none none -6.99
7 none none none none -6.37
8 none none none none -6.54
9 none none none none -6.71
10 none none none none -6.4
11 none none none none -7.15
12 none high low none -6.37
13 none none none none -6.99
14 none none none none -6.94
15 none none none none -6.56
16 none none none none -6.94
17 high none none none -7.29
18 none none none none -6.26
19 none none none none -7.65
20 none none none none -7.3
21 none none none none -7.11
22 none none none none -6.9
23 none none none none -6.99
24 none none none none -6.94
25 none none none none -6.33
STD1 high none none high -4.96
STD2 none none none none -8.01

STD1:Chloroquine;

STD2: Azithromycin (Zithromax)
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Table S7 Pharmacokinetics properties of the 25 iminoguanidine derivatives and the control drugs

Cpd Gl BBB Pgp CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | CYP3A4
No. absorption | permeant | substrate | inhibitor inhibitor inhibitor inhibitor inhibitor
2 High No No No No No No No
3 High No No No No No No No
4 High No No No No No No No
5 High No Yes No No No No No
6 High No No No No No No No
7 High No No No No No No No
8 High No No No No No No No
9 High No No No No No No No
10 High No No No No No No No
11 High No No No No No No No
12 High No No No No No No No
13 High No No No No No No No
14 High No No Yes No No No No
15 High No No No No No No No
16 High No No Yes No No No No
17 High No No No No No No No
18 High No No No No No No No
19 High No No No No No No No
20 High No No No No No No No
21 High No No No No No No No
22 High No No No No No No No
23 High No No No No No No No
24 High No No No No No No No
25 High No No Yes No No No No
STD1 | High Yes No Yes No No Yes Yes
STD2 | Low No Yes No No No No No

STD1: Chloroquine; STD2: Azithromycin (Zithromax)

Molecular dynamics simulation analysis of Compound 18

An MD simulation for binding stability of the model P.
aeruginosa inhibitors protein with compound 18, was
performed and the results wesmalysed The structural
stability of the complex waanalysedising rootmeansquare
deviation (RMSD), root means square fluctuation (RMSF),
and solvent accessible surface area (SASA) of the model. As
shown in Fig. 10 and 11A, the complex reaches the
equilibrium state after 1 ns. This finding implies that our

complexis stable during and after the simulationFig. 10A,

little fluctuations are observed aroundi1@80 ps, but after
this time, the RMSD becomes stable until the end of the
simulation. The overall average RMSD value after 1ns MD
simulations is 3.65 A. fie ligand RMSDs fluctuated with a
maximum value of 3.06 A at about 480 ps followed by more
stable interactions for the rest of the simulation. The analysis
of the RMSF of the complex is recordedHRig. 10B. The
RMSF is a metric for determining how much aom or a
residue moves over tin{®6,57. A close look at the RMSF

plots(Fig. 10B)reveals adequate dynamic stability as well as
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the compactness of the liganeceptor complexes. From the
figure, it has been found that the stability of the ligand
recepbr is almost right to the height range of the MD
simulation study, and it has provided information as a drug.
The involvement of each fragment of a molecule, in terms of
hydrophobicity, can be assessed by increasing
corresponding atomic parameter by ttlegree of contact to
the surrounding solvenf57,59. The contact degree is
naturally represented by the solvemicessible surface area

(SASA). The solvenaccessible surface area (SASA)

the

calculation on the amino acid residues within the 1.4 sphere
of compound 18 was done to highlight the solvent
accessibiliy toward the simulated complex pocket. Surface
racer v5[59]. was used to compute the complex's SASA. The
SASA for complex(Fig. 11A) has a total accessible surface
area of 1868.35 A2, polar accessible area of 5783.65 A2, and
non-polar accessible surfaceea of 5030.13 A2 as presented
in Table 3. It can be seen from the plot that the SASA values
for the compound 18 complex §¥14 - 14.6 A2 were rather
higher.

Table 3: The solventaccessible surface area (SASA) for the simulated complex

The surface area of P. aeruginosa inhibitors protein with compound 18

Number of norHOH

nonH atoms=1643
Proberadius=1.40

TOTAL ASA=10813.78

TOTAL MSA=0.00

Polar ASA=5783.65

Non-polar ASA=5030.13

Polar MSA=0. 00

Non-polar MSA=0.00

Total backbone ASA=1868.35

Total backbone MSA=0.00

Polar backbone ASA=1200.18

Non-polar backbone ASA=668.17

Polar backbone MSA=0.00

Non-polar backbone MSA=0.00

Polar side chain ASA=4583.47

Non-polar side chain ASA=4361.96

Polar side chain MSA=0.00

Non-polar side chain MSA=0.00

+charge ASA=1087.07

-charge ASA=1752.79

+charge MSA=0.00

-charge MSA=0.00

Structure contains 10 cavities

ASA = accessible surface area; MSA = molecular surface area

The ligand (compound 18) interacted strongly with the
protein, maintaining the majority of the interactions along
with the simulationFig. 11B). The ligand remained almost

in the same place: it started interacting with the residues
Phe39, Leul29, Leul29,ys34, Glu30, HSD26, Leu29,
Serl22, Val33, Leul24, and Gly121 of the receptor. At the
end of the simulation, the interactions with Lys132, Pro38,
Phel189, Arg80, and Glu52 were lost, but new interactions
with HSD26, Leu29, Leul24, and Gly121 appeared, thith

ligand drifting slightly from the subsurface to a position

buried outside the protein. However, there were almost no
structural changes on the protéitig. 10B).

Conclusion
Computeraided drug desigfCADD) is a burgeoning field of

study. In bottacademia and industry, computational methods
are indispensable and creditable tools that unquestionably
speed up the discovery of lead drug. The computational
and theoretical interactions of 25 iminoguanidine derivatives

with the nucleocapsid phosphopein and heme oxygenase
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Fig. 10: (A) Root mean square deviation (RMSD) of thalgha backbone of the protein complex with compound 18. (B) Root mean

square fluctuation (RMSF) for-@lpha backbone atom of the protein complex with compound 18.
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Fig. 11: (A) The plot of solvent accessible surface area (B) Representation of modeled receptor molecule with inhibitor atdfte active

showing proteidigand hydrogen bond interaction with residue as Leul24 with ddedteraction with Glu30.

structures were studied in this study. Genetic function

approximatioamultiple linear regression (GFMLR) was

used to construct a quantitative structaotivity relationship

model of iminoguanidine derivatives against Pseudwaso

aeruginosa. The GFAMLR had a significantly predictive

capability with greater power. The results show that the

model proposed in this research can select autocorrelation and

charged partial surface area descriptors (AATS8p and TPSA),

which are adequaly rich in topological information to

encrypt structural landscapes, could be used with other

signifiers in the development of predictive QSAR models.
The QSAR model was able to show stability and predictive
power, confirmed by fittings criteria, internalalidation
criteria, and external validation criteriAfter a successful
homology modelling with the query sequences and templates,
we came through the key amino acids and the number of
hydrogen bonds required to select compounds iwdtibitory
potential for thisPseudomonas aeruginosa and SARS/-

2, based on azithromycin and chloroquine drugs as reference.

molecular docking studies results e modelledeceptors
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