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Abstract

Pseudomonas aeruginosa and SARS-CoV-2 are two of the world's most hazardous diseases. Treatments that target the
enzyme or protein could be more successful and efficient. In this study, iminoguanidine derivatives were treated to a
combination of five [5] computational assessments in the: 2D-QSAR, homology modeling, docking simulation, ADMET
evaluation, and molecular dynamics simulations [MDs simulations]. A dataset of 25 iminoguanidine compounds was used
in the QSAR analysis, giving a statistically robust and highly predictive model. The created model has been thoroughly
validated and meets various statistical parameter thresholds. The interactions between Chloroquine and Azithromycin, a
potentially and commonly used antimalarial and antibacterial medication, and the postulated iminoguanidine derivatives
with the SARS-CoV-2 main nucleocapsid phosphoprotein were investigated using the docking simulation. The docking
data demonstrate that the novel compound 18 has a high level of stability in the SARS-CoV-2 active site as well as a high
binding affinity for the heme oxygenase receptor. The rules of five, rule of two, toxicity, and metabolism were used to
screen these compounds for suitable fragments and pharmacological properties. Predictions of pharmacological properties
suggested that compound 18 could be a promising therapeutic candidate for Pseudomonas aeruginosa and SARS-CoV-2.

Keywords: QSAR, Homology modelling, docking simulation, ADMET, MDs Simulations, Covid-19, Pseudomonas

aeruginosa, and iminoguanidine derivatives.

- /

market volatility, large-scale cancellations of sporting and

Introduction

The coronavirus disease pandemic (covid-19) has wreaked entertainment  events, and restrictions on large-scale

havoc on global supply systems, resulting in a dramatic migrations  of people in numerous countries, and

decline in global crude oil prices, global stock, and financial intercontinental travel bans and restrictions have been
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imposed on key flight routes around the world [1]. SARS was
declared eradicated in July 2003, although the risk of
pandemic SARS-CoV re-emergence remains [2]. The new
SARS strain (SARS-CoV-2) is more virulent than the one that
caused the 2003 and 2019 outbreaks [3]. This recent epidemic
of a new strain of Coronavirus (SARS-CoV-2) has caused
deaths around the world [4]. High temperature, malaise,
myalgia, headache, non-productive cough, diarrhoea, and
shivering are among the symptoms [3]. With over
112,305,539 confirmed and 2,486,641 death cases
documented so far (https://coronavirus.jhu.edu/map.html),
the number of confirmed and death cases is increasing daily.
Pseudomonas aeruginosa (P. aeruginosa) on other hand is a
virulent opportunistic pathogen that needs iron to survive
[5,6]. The heme assimilation system (Has) and Pseudomonas
heme uptake (Phu) systems allow Pseudomonas aeruginosa
to obtain iron from heme [7]. Pseudomonas aeruginosa have
evolved powerful sensing and integrating energy systems to
sense critical environmental conditions and alter virulence
gene expression to allow infection to succeed [8]. This
bacterial is a primary cause of death in cystic fibrosis patients
with persistent bronchitis, infects cancer patients who are
malnourished, and is one of the most common causative
organisms causing ventilator-associated pneumonia and
nosocomial bacteremia [9]. The attributable mortality rate of
P. aeruginosa is very high. Since the COVID-19 pandemic,
treating nosocomial ventilator-associated pneumonia has
become crucial, particularly when early investigations have
identified P. aeruginosa as one of the most common bacterial
infections in COVID-19 patients [9-11]. These diseases can
evolve novel resistance mechanisms and can pass genetic
materials on to other diseases, allowing them to develop
resistance to drugs as well [12]. Some SARS-CoV-2 entry
and replication inhibitors have been identified in early studies
[13]. The multifunctional protein nucleoprotein (NP) is
involved in many aspects of the viral life cycle, including
viral replication, transcription, RNA encapsidation, the
mobilization of ribonucleoprotein complexes to viral budding
sites, and the inhibition of the host cell interferon response
[14]. The nucleocapsid phosphoprotein and heme oxygenase,
respectively, are essential for viral and bacterial replication.
Inhibiting SAR-CoV-2 and P. aeruginosa via the

nucleocapsid phosphoprotein and heme oxygenase could be a
lucrative drug target. The activity of the nucleocapsid
phosphoprotein and heme oxygenase could be inhibited,
preventing virus and bacterial replication inside infected
cells. Structure-Based Drug Design (SBDD), a direct design
that is used when the target's spatial structure is known, and
Ligand Based Drug Design (LBDD), an indirect design used
when the target's structure is unknown, are the two major
methodologies and strategies used in Computer-Aided Drug
Design (CADD) [15]. Molecular docking and de-novo design
are the two broad categories of SBDD. If the desired
molecular target can be isolated and crystallized, the
molecular docking process is followed [16]. It's best to
crystallize the protein with a ligand (cocrystal ligand), as this
aids in the identification of the binding [active] site [17]. A
binding site is a region of a protein that has the size, geometry,
and functionalities that the ligand requires. This aids in the
analysis of ligand-active-site amino acid interactions [18].
The knowledge of analog molecules that bind to a biological
target of interest is used in Ligand-Based Drug Design
(LBDD) [19]. These analogs are used to create a
pharmacophore model, which specifies the structural
characteristics that a molecule must have to bind to its target
[20]. Quantitative Structure-Activity Relationship (QSAR) is
another method for determining a link between the calculated
properties of molecules and experimentally determined
biological activity [21].

The strict in silico (computer-aided drug design) instructions
can help prevent the spread of these diseases if they are
followed. In silico (computer-aided drug design) forecasts, on
the other hand, are gaining popularity in the field of drug
evaluation. As a result of this in silico approach, several
pharmacological inhibitors have been identified [22]. The
computer-aided drug design [CADD] (i.e., Quantitative
structural activity-relationship, molecular docking, molecular
dynamics simulations, and ADMET) can help in screening
out the few drugs in the treatment of these diseases [23,24].
Many previous studies have attempted to identify drug targets
for an infectious disease like Covid-19 and Pseudomonas
aeruginosa using QSAR, CoMFA, ADMET, and molecular
dynamics simulations [25,26], comparative genomics, multi-

omics approach, or subtractive genomics approach, and have
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been successful in identifying a significant number of
potential drug targets [27].

We use quantitative structure-activity relationship (QSAR)
modelling to assess a variety of iminoguanidine derivatives
as potential P. aeruginosa therapeutics in this study. By
optimizing and confirming the relationship between a
substance and its chemical properties, this strategy is one of
the most versatile and effective methodologies in the field of
drug design and molecular modelling [28]. We use molecular
docking on the drug like-protein complex to find the binding
site, as well as the orientation pose of the drugs like with the
receptor. Molecular dynamics (MD) simulations of the drug-
like-protein complex are undertaken to establish that the
complex generated by molecular docking is stable in the
water solvent. MD simulation trajectories are used to see the
complex's binding energy interactions. The variety of

computational techniques, such as QSAR, molecular

docking, ADMET, and MD simulations, is expected to not
only provide a better understanding of complex interactions
but also to have significant implications for the development

of more potent SARS-CoV-2 and P. aeruginosa medications.

Methods

Data gathering and analysis of the protein domain family
The inhibitor activities of 25 iminoguanidine derivatives
against P. aeruginosa were gathered from the PubChem
database with the accession number AID_1315712. All 3D
structures were created and built by the MarvinView program
to anticipate the link between activity and various parameters
and to develop a multiple linear regression model. Table S1
shows the architectures of the compounds investigated
together with their activity pMICsy (pMIC50 = -Log
(MIC50)) values.

Table S1. The 2D structures of the 25 iminoguanidine derivatives with their docking binding scores.

Cpd No. PubChem access number AID_131512 -LogMICso Binding affinity (kcal/mol)
Structures pMICso CoV-19 PA
1 Ho B 1.69019608 -5.6 -6.4
Ho\
HN:;// ‘N)\Q\
\ Cl
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2 Hy-H y o '“H 2.08278537 -55 -6.4
Hy— N N
H N7 H/
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3 oH 2.089905111 -6.1 -6.4
H N H H
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H MH
H (6]
HN /N\N/ H
N
HOH Oy H
H
5 H‘N/H hooM oH 1.862131379 -5.8 -6.4
H
WA Y@o
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7 1.684845362 -6.5 -7.9
8 1.719331287 -5.8 -6.4
9 1.674861141 -5.6 -6.7
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PubChem CID: 447043
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CoV-19 = Covid-19; PA = Pseudomonas aeruginosa
A quantitative structural-activity relationship (QSAR) is a
mathematical relationship that links chemical structure to
pharmacological activity or another property for a group of
compounds. A QSAR equation, as defined by Crum Brown
and Fraser [29], is:
p=glAl +g2A2 +g3A3 +... + gnAn
Equation 1

Where an represents one constitutional [structural] property,
and gn is its coefficient, p is the pharmacological
activity/Biological activity. Mathematically the equation can
be represented as
Y =b1X1 +b2X2 +b3X3 ... bnXn+C

Equation 2
Density function theory (DFT) at the B3LYP/6-31+G (d,p)
level was used to obtain the lowest ligand structure energies
using Gaussian09 software [30]. For 2D-QSAR, PaDEL-
Descriptor’s software v2.20 [31] was used to calculate the
descriptors of the chemicals employed in this study. The
molecules were divided into training sets and test sets using a
random percentage of 30% test set from the QSARINS
software v2.2.4 [32] after descriptors selection. A crucial
phase in the development of a QSAR model is model
validation. The models were evaluated using a variety of
methodologies and statistical factors. According to Galbraith
and Tropsha [33], the suggested QSAR model is predictive

since it meets the following criteria: R}, .4 = 0.5, R* > 0.6,

"7 < 0.1, 0.85 < K > 115, 0.85 < K > 1.15. Roy and

Roy [34] provided another set of measures, r’m metrics, to
further refine the prediction capabilities of the existing QSAR
models. These measurements determine the proximity
between observed and predicted activity [35,36].

Homology Modelling

The amino acid sequence (query protein) of the nucleocapsid
phosphoprotein  (severe acute respiratory  syndrome
coronavirus 2) NCBI accession ID: QLI52053 and heme
oxygenase (Pseudomonas aeruginosa PAO1) NCBI accession
ID: NP_249363, respectively, were obtained from the
National ~ Centre  for  Biotechnology  Information
(www.nchi.nlm.nih.gov). Nucleocapsid phosphoprotein and

heme oxygenase sequence were BLAST searched against the

Protein Data Bank to find a relevant protein with a
comparable structure to the query protein. The CLUSTALW
program [37], which can be found at
http://www?2.ebi.ac.uk/CLUSTALW, was used to align the
sequence of the human sapiens receptor with that of the target
sequence. Using the MODELLER program v9.25 [38], a total
of 5 models were created. The discrete optimized protein
energy [DOPE] score was used to rank and grade the protein
model generated by the MODELLER. One of the five models
with the lowest DOPE scores was chosen and evaluated using
the ERRAT and RAMPAGE servers. The Ramachandran
plot, acquired using the PROCHECK  server
(https://servicesn.mbi.ucla.edu/PROCHECK/), was used to
characterize the structural properties of the modeling protein.
Using Discovery studio 2020, the best model was chosen for
energy minimization to reduce side-chain clashes, add polar
hydrogen, and it was then employed in docking and molecular
dynamics simulations.

Docking Simulations

To find the binding site of the 25 selected iminoguanidine
derivatives into the built homology model protein described
above, molecular docking simulation is performed by using
AutoDock vina with PyRx packages v0.8 [39] to evaluate the
interaction of compounds with the designed protein. The
homology model protein-ligand complexes were compared
with the standard drugs in terms of binding affinity and bond
residues.

Pharmacokinetics properties and Lipophilicity analysis
Predicting ADMET characteristics is a crucial study for
avoiding medication failure in clinical trials [3]. Predictions
of pharmacokinetics and bioavailability are important tools in
the drug development process and should be taken into
account when creating a new drug. The SwissADME web
application [40]. which is freely available online, was used to
examine the pharmacokinetics of selected compounds.
Another software used to calculate lipophilicity is the Data
warrior package [41].

Molecular Dynamics Simulations (MDS)

phases with the corresponding receptors. The modelled
receptor-ligand complexes were simulated using the NAMD
2.13 Win64-multicore version [42], which included the
CHARMM 36 force field [43] and the TIP3P water model.
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Several co-time approaches were applied, with a 2-fs
integration time step. The CHARMM-GUI web service [44]
was used to produce ligand topology and parameter files, and
psf files of modelled receptor-ligand complexes and
neutralize the system with potassium (K+) and chloride (ClI-)
ions. The simulation/production [NPT] ran for 1-ns with 5000
steps of minimization [NVT]. The temperature was kept
constant at 303.15 K using a Langevin thermostat. The
system's perimeter was surrounded by periodic boundary
conditions. Visual molecular dynamics (VMD) [45] was

employed for the visualization of the complex.

Results And Discussion

To determine the key structural features of iminoguanidine
derivatives against SARS-CoV-2 virus and P. aeruginosa, a
combination of QSAR analysis, docking simulation,
pharmacokinetics, and molecular dynamics simulations were
used in the current study. QSAR was created utilizing a

genetic algorithm implemented in the QSARINS software

[32]. as a descriptor screening strategy, followed by MLR
analysis from a huge pool of descriptors [46]. The statistical
parameters to evaluate the quality of these QSAR models are
summarized in Table S2, and the best QSAR models among
several generated models are shown below (Model 1). The
genetic approximation (GA) techniques yield two descriptors
with substantial relationships to inhibitory activity pMICso. In
the GA-MLR model of the training set, the following
descriptors were chosen: AATS8p = Average Broto-Moreau
autocorrelation - lag 8 / weighted by polarizabilities and
TPSA = Sum of solvent accessible surface areas of atoms
with the absolute value of partial charges greater than or equal
0.2. The model GA-MLR statistical characteristics revealed
approximately 91 percent correlation between the
experimental and estimated values of the training data set.
The strong R? = 0.91 regression coefficient, low standard
deviation (RMSE = 0.13), and value of the Fischer test (F =
75.7) all indicate that the developed model is statistically

significant.

Table S2. Model validation parameters and their threshold values

Validation criteria Model scores Threshold Remarks
Fittings criteria

R? 0.9099 R?2>0.6 Pass
RZ 0.8978 RZ%4j> 0.5 Pass
R2?-R2yj 0.0120 R2tr-R2adj < 0.1 Pass
LOF 0.0269 Low Pass
KXxx 0.3217 Low Pass
Delta K 0.3036 Low Pass
RMSE 0.1276 RMSE < RMSE ¢ Pass
MAE 0.1019 close to zero Pass
RSSy 0.2932 Pass
CCCy 0.9528 CCCtr>0.8 Pass
S 0.1398 Low Pass
F 75.6983 Large Pass
Internal validation criteria

Q%00 0.8413 Q2LO0>0.5 Pass
R%-Q%00 0.0685 R2 - Q2LO0<0.1 Pass
RMSE.y 0.1693 Close to zero Pass
MAE. 0.1323 Close to zero Pass
PRESS.y 0.5161 Pass
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CCCe 0.9235 CCCcv=0.8 Pass
Q2LMO 0.8055 Q2LMO > 0.6 Pass
R2Yscr 0.1156 R2Yscr <R2 tr Pass
Q?Yscr -0.3777 Q2Yscr < Q2LOO Pass
RMSE AV Yscr 0.3988 Pass
R2Yrnd 0.1174 R2Yscr < R2tr Pass
Q2Yrnd -0.3688 Q2Yscr < Q2LOO Pass
External validation criteria

RMSEex 0.3241 Close to zero Pass
MAE-ex 0.2528 Close to zero Pass
PRESSext 0.6301 Pass
RZext 0.3768 R2ext>0.6 Pass
Q2-F1 0.1153 Pass
Q2-F2 -0.2748 Pass
Q2-F3 0.4188 Pass
r2m aver. 0.2307 Pass
r2m delta 0.0813 Pass
Predictions by LOO:

Exp(x) vs. Pred(y): R2 = 0.8546; R'20 = 0.8525; k': 1.0040; Clos'= 0.0024; r'2m = 0.8156

Pred(x) vs. Exp(y): R2 = 0.8546; R20 = 0.8440; k = 0.9887; Clos = 0.0123; r2m = 0.7669
External predictions by model equation:

Exp(x) vs. Pred(y): R2 = 0.3768; R'20 = 0.2984; k' = 1.0697; Clos' = 0.2081; r2m = 0.2713
Pred(x) vs. Exp(y): R2 = 0.3768; R20 = 0.1311; k = 0.9199; Clos = 0.6522; r2m = 0.1900

pMIC50 = 2.9147 - 1.4756 [AATSSp] + 0.0074 [TPSA] ---

This model's internal prediction power is shown in Fig. 1 with
less Friedman’s lack of fit (LOF) score of 0.0269 and MAEy
value of 0.1019. We used the cross-validation method (CV)
with the leave-one-out (LOO) procedure to test the
performance of the genetic approximation (GA) and the
validity of our choice of descriptors selected by multiple
linear regression (MLR). One compound is removed from the
data set in this procedure, and the network is trained with the
remaining compounds to predict the discarded compound.
The procedure is repeated for each compound in the data set
in turn [21]. The results of the internal validations (Table S2)
show that the cross-validation (Leave one out) approach
produced a good correlation, indicating that the QSAR model
is unaffected by chance correlation. This provides a
preliminary indication of the proposed QSAR model's

stability and robustness. The Y-randomization method was

used to validate the QSAR model, and the obtained value of
the randomized model's correlation coefficient is less than
that of the non-randomized model (Fig. S1), and their
difference cRr? is greater than 0.5, indicating that the given
QSAR model is considered robust and not the result of
random accident. The plot of experimental versus calculated
activity values using the GA-MLR model is shown in Fig. 2,
which were used for evaluating their generalization
capacities.

According to the GFA-MLR equation for external validation
criteria, the test set's predicted pMICso values are as follows:
The RMSE.x: between the experimental and predicted pMICsg
values was 0.3241 with a low mean absolute error (MAEex;)
of 0.2528, indicating high predictability. Other parameters
such as PRESSex, R%xi, Q2-F1, Q2-F2, Q2-F3, CCCex, ’m
aver., and r?y delta met the threshold criteria prove that the

model is robust and statistically significant (Table S2).
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Exp. endpoint vs. Pred. by model eqg. * Prediction

3,144 <
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1.385 1.588 1.810 2.033 2.255 2.477 2. 700 2.922 3144
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Fig. 1: Sort plot of experimental pMIC50 versus predicted pMIC50 values of model 1.
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Fig. S1. Scatter plot of the Y-randomization based on QSAR model.
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Fig. 2: The plot of GA-MLR predicted activity by LOO versus experimental endpoint activity.
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In Fig. S2 and S3, the anti-P. aeruginosa residuals of internal
and external predictions are displayed against the predicted
endpoint. The estimated correlation coefficients between
experimental and predicted pMICs values (Predictions by
LOO) with intercept (R%) and without intercept (R%) were
0.8525 and 0.8440, while external predictions by the model
equation R'?, with intercept and R%, without intercept are
0.2984 and 0.1311, respectively. Also, the values of k and k'’
for the internal and external validation shown in Table S2 are
within the specified ranges of 0.85 and 1.15 [47]. The values
of r’m = 0.7669 and r?m = 0.8156 were found to be in the
acceptable range [34], thereby indicating the good external
predictability of the QSAR model. The application domain

used to screen chemicals [48]. A basic measure of a
chemical's distance from the model's applicability domain is
its leverage (Table S3). The warning value (h* = 0.5) is
higher than the leverage (H) values of all the compounds in
the training and test sets except compound 19 (Fig. 3). The
training set is extremely representative, and none of the
chemicals has a significant influence on the model space.
Because of its different anti-P. aeruginosa activity
mechanism, compound number 3, and 23 standardized
residuals were slightly bigger than 2.5 standard deviation
units (2.5 8). Compound 19 (Fig. 3) which is not within the
cut-off of the threshold value (0.5) could be due to incorrect

experimental input data or its anti-P. aeruginosa activity

(AD) of a QSAR model must be determined before it can be mechanism.
I.DDD?
D.?SD%
D.SDDE
E -
0.250—5 = -
I>
i e = &
D.UDU—‘E L J
E| =T =
E <> L= L=
O.ZSU—; L=
O.SDU—E
O.?SU—E
-1.000 E T T T T T T 1
1.517 1.720 1.924 2.127 2.534 2.738 2.941 3.14949

AATSEp TPSA

Pred. endpoint

Fig. S2. The plot of residuals versus experimental values of the training set and test set.

Pred. endpoint vs. Residuals * Prediction

Residuals
1.000—
0.750
0.500

3 -

3 -~ <
0.250

41 <=

< L=l

0. 000 -

E E=0 = o

[=] L=)

3 O.

-0.250—
L=
-0.500
-0. 750
-1.000 T T T T T T 1
1.518 1.750 1.982 2.213 2.445 2.677 2.909 3. 140 3.372

AATSERp TPSA

Pred. endpoint

Fig. S3. The plot of residuals versus predicted endpoint of the training set and test set.
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HAT ifi (h™ = 0.500) vs. Std. residuals

Std. residuals

5.000
3.?5ljé
] =
2. snn—i ——————————————————————
@
: GD
-2, 500—; ——————————————————————
—3.750—§
-5.000 ] T T T T T T T 1
0.059 0.142 0.225 0.308 0.391 0.474 0.557 0.639 0.722
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Fig. 3: Hat diagonal values versus standardized residuals (William’s plot).

Table S3. Experimental dataset employed for QSAR study along with predicted and actual pMICs, values against pseudomonas

aeruginosa.
ID Cpd No. Status Observed activity Pred. by model eq. HAT i/i (h*=0.5000)
1 2 Training 2.0828 1.9580 0.2232
2 3 Prediction 2.0899 2.5087 0.1811
3 4 Training 1.9978 1.9328 0.0595
4 5 Training 1.8621 1.8585 0.1558
5 6 Training 2.1179 2.3176 0.1512
6 7 Training 1.6848 1.6380 0.0835
7 8 Training 1.7193 1.6843 0.0790
8 9 Training 1.6749 1.7950 0.0634
9 10 Training 1.7185 1.9480 0.1803
10 11 Training 2.0531 2.0657 0.1808
11 12 Training 1.5065 1.5996 0.1544
12 13 Prediction 2.2095 2.4197 0.1616
13 14 Prediction 1.7202 1.6438 0.0794
14 15 Training 1.3655 1.5327 0.1834
15 16 Training 1.6998 1.6462 0.1494
16 17 Training 1.9058 1.8505 0.0940
17 18 Training 1.7716 1.6514 0.0785
18 19 Training 3.0569 3.1444 0.7223
19 20 Prediction 2.6107 2.5951 0.2160
20 21 Training 2.8751 2.5885 0.2146
21 22 Prediction 21271 1.9383 0.0856
22 23 Prediction 1.8235 2.4308 0.1659
23 24 Training 1.7101 1.5837 0.1005
24 25 Training 1.5092 1.5169 0.1261
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Homology modelling and Docking interactions

The comparative modelling of the severe acute respiratory
syndrome and Pseudomonas aeruginosa PAO1 was built
using crystal structures of nucleocapsid phosphoprotein
(Accession ID: QLI52052) and heme oxygenase (Accession
ID: NP_249363) which were retrieved from the NCBI. The
above-mentioned virus and bacterial host components could
be used as ideal molecular targets for developing novel and
effective drug candidates against SAR-CoV-2 and gram-
negative bacteria due to their fundamental role in viral and
bacterial transmission, replication, and pathogenesis. Then
the BLAST program was used to search for a suitable
template in Brookhaven Protein Data Bank (PDB) format.
The PDB entries: 1ssk_A, 6m3m_A, 6wji_A, 6wzg_A, and

6yun_A as a template for severe acute respiratory syndrome
and PDB entries: 1j77_A and 1sk7_A were selected as a
template for Pseudomonas aeruginosa. They were found to
show good percentage identity, query cover, and low E-value
score, and then refined via loop modelling. MODELLER 9.25
was used to examine the structural and sequence similarities
between the various templates to choose the best acceptable
template for our query sequence among the PDB structures.
We finally pick 6wiji over the rest because of its percentage
identity of 100%, 28% query cover, and E-value score of
3x1082, The homology modelling for heme oxygenase
yielded a similarity identity of 100%, which was confirmed
by a percentage identity matrix of PDB code: 1j77. The
MODELLER 9.25 and Chimera v1.10.2

Fig.4: 3D model structures superimposed (A) nucleocapsid phosphoprotein: (severe acute respiratory syndrome) (B) heme oxygenase

(Pseudomonas aeruginosa PAO1).

were used together for model building and alignment and the
best model (with the lowest normalized DOPE score) was
chosen. As demonstrated in Fig. 4, the target and template
proteins sequences of SARS-CoV-2 and Pseudomonas
aeruginosa were aligned, respectively.

With all the obtainable data and results, the aligned sequence
of the modelled SARS-CoV-2 receptor and Pseudomonas
aeruginosa receptor generated by using align2d script in
MODELLER 9.25 with their corresponding template are
presented in Fig. 5A and Fig. 5B, respectively. Five (5)

models were built based on the alignment (Table 1 and Table
2).

The predicted model with the least DOPE score was chosen
for molecular docking simulation.

From Table 1 and 2, the fourth (4™) and third (3") predicted
models were selected for further analysis. The DOPE score
profile of the selected modelled SARS-CoV-2 and
Pseudomonas aeruginosa protein in Table 1 and Table 2 are

presented in Fig. S6 and Fig. S7, respectively.

www.acquirepublications.org/JVVD

12


https://www.acquirepublications.org/Journal/Virology/Virology-and-Viral-Diseases
https://www.acquirepublications.org/Journal/Virology/Virology-and-Viral-Diseases

Journal of Virology and Viral Diseases Q

_aln.pos 10 20 30 40 50 60
BWjiA
target MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPR
_consrvd

_alnp 70 80 90 100 110 120 130
BWjiA
target GQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATE
_consrvd

_alnpos 140 150 160 170 180 190 200
BWjIA
target GALNTPKDHIGTRNPANNAAIVLQLPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRG
_consrvd

_aln.pos 210 220 230 240 250 260 270

BWjiA KPRQKRTATKAYNVTQ

target TSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYNVTQ
_consrvd - O x

_alnpos 280 290 300 310 320 330 340

6wjiA  AFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLD
target AFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGAIKLD
_consrvd isieiaiieieiats o isieiaiaeiaiaieiaiaiele * ko iseiaialeis

_aln.pos 350 360 370 380 390 400
6wjiA DKDPNFKDQVILLNKHIDAYKTFP
target DKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDDFSKQLQ
_CONSryg **kkxkok ichalaiaiaiaaiaiaiat

_aln.p 410
BWJIA -
target QSMSSADSTQA
_consrvd
A

“alnpos 10 20 30 40 50 60

[ o/ — NLRSQRLNLLTNEPHQRLESLVKSKEPFASRDNFARFVAAQYLFQHDLEPLYRNEAL

gseq MDTLAPESTRQNLRSQRLNLLTNEPHQRLESLVKSKEPFASRDNFARFVAAQYLFQHDLEPLYRNEAL
_COﬂSI’Vd T HRTHRRTIRAAS T T jalaialakakalalalalel jalaiakaialalalalalabalalalel

‘alnp 70 80 90 100 110 120 130
1sk7A  ARLFPGLASRARDDAARADLADLGHPVPEGDQSVREADLSLAEALGWLFVSEGSKLGAAFLFKKAAAL
gseq ARLFPGLASRARDDAARADLADLGHPVPEGDQSVREADLSLAEALGWLFVSEGSKLGAAFLFKKAAAL

cons rvd KEEAKAAKXAKKAKAEIAAKRAKAKAAEAAAKAKAAKRARAAAAAKRKAAAAAXAAAAAAAAAAAAAAAAAAkkkhkhihiiihhkik

_alnpos 140 150 160 170 180 190
1sk7A  ELDENFGARHLAEPEGGRAQGWKSFVAILDGIELNEEEERLAAKGASDAFNRFGDLLERTFA
gseq ELDENFGARHLAEPEGGRAQGWKSFVAILDGIELNEEEERLAAKGASDAFNRFGDLLERTFA

COﬂSNd *% * X%k *kkKkk *Xk%k *% *% * *% *% *% * *Kx%k *%

B

Fig. 5: Sequence alignment result between (A) SARS-CoV-2 receptor with template 6wji.pdb, (B) Pseudomonas aeruginosa receptor
with template 1j77.
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HAT ifi (h* = 0.500) vs. Pred. by model eq. * Prediction
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Fig. S4. Insubria graph for the applicability domain check of the descriptor model for the prediction of anti-P. aeruginosa.
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Fig. S5. Plot of LMO validations and Y-scrambled models compared with the original model.
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Fig. S6. SARS-CoV-2 DOPE score profiles for the model and templates
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Fig. S7. Pseudomonas aeruginosa DOPE score profiles for the model and templates

The resulting Ramachandran plot (for nucleocapsid
phosphoprotein model) suggests that 93.9% of residues
angles are in the more favourable regions, 5.5% residues in
the additional allowed regions, 0.3% residues in generously
allowed regions, and 0.3% residues in disallowed regions, as
verified by PROCHECK [Fig. 6]. It means that the final

nucleocapsid phosphoprotein 3D  model obtained is
satisfactory once more. Only one residue is found in the
forbidden region according to the Ramachandran plot.
Because the residues in the unfavourable regions are far from
the substrate-binding domain, they are unlikely to have an

impact on ligand-protein binding simulations.

Table 1: Five SARS-CoV-2 models' modeller objective function (molpdf), discrete optimized protein energy (DOPE) score, and
genetic algorithm 341 (GA341) score.

Filename molpdf DOPE score GA341 score
target.B99990001.pdb 1769.21606 -15788.35547 1.00000
target.B99990002.pdb 2066.10718 -16054.67480 1.00000
target.B99990003.pdb 1873.94128 -16079.09082 1.00000
target.B99990004.pdb 1802.19812 -16286.84668 1.00000
target.B99990005.pdb 1915.55005 -15795.42773 1.00000

The heme oxygenase model in Fig. 7 suggests that 94.9% residues in most favored regions, 5.1% residues in additional allowed

regions, no residues in generously allowed and disallowed regions. The PROCHECK result revealed that the predicted model has a

higher quality protein fold, implying that it can be used for subsequent docking experiments [49].

The finding of ligand-binding sites is frequently the first step

in determining protein function and therapeutic development [50]. Blind docking was performed to bind ligands and the model

structures. PyRx (Autodock vina) predicted the active site of the nucleocapsid phosphoprotein and heme oxygenase receptor with

greater average precision in our investigation. All of the compounds were found to have a substantial inhibitory effect by entirely

occupying the target protein's active areas (Fig. 8 and 9).
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Table 2: Five Pseudomonas aeruginosa models' modeller objective function (molpdf), discrete optimized protein energy (DOPE)

score, and genetic algorithm 341 (GA341) score.

Filename molpdf DOPE score GA341 score
gseq.B99990001.pdb 814.45660 -21988.66797 1.00000
gseq.B99990002.pdb 759.40881 -22353.58008 1.00000
gseq.B99990003.pdb 802.71722 -22495.24805 1.00000
gseq.B99990004.pdb 710.66162 -22135.44141 1.00000
gseq.B99990005.pdb 698.06323 -22239.36523 1.00000
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Fig. 6: PROCHECK generated a Ramachandran plot of the distribution of nucleocapsid phosphoprotein.

As shown in Table S1, binding affinity values for target
protein range between (-4.7 and -7.9 kcal/mol) for both
SARS-CoV-2 and P. aeruginosa inhibitors. However, when
compared to the standards, compound 18 has the highest
binding affinity of -7.7 and -7.9 kcal/mol over Chloroquine (-
4.7 kcal/mol) for SARS-CoV-2 inhibitor, and over Zithromax

(-7.7 kcal/mol) for P. aeruginosa inhibitor, respectively. As a
result, only the molecule (compound 18) with the strongest
binding affinity was visualized with the standards and
examined in the Molecular Operating Environment (MOE,

2015), as shown in Fig. 8 and 9, respectively
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Fig. 7: PROCHECK generated a Ramachandran plot of the distribution of heme oxygenase.
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Fig. 8: (A) Compound 18 and (B) Chloroguine interact at the binding sites of the modelling protein in 2D docking poses. Compound 18
has a binding affinity of -7.4 kcal/mol. Chloroquine (binding affinity -4.7 kcal/mol).
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The ligand (compound 18) created two hydrogen bonds with
one residue in the nucleocapsid phosphoprotein target:
Leu331 with a distance of 3.11 A (-1.4 kcal/mol) and 3.25 A
(-0.7 kcal/mol) indicating a robust and stable contact between
this ligand and the major nucleocapsid phosphoprotein active
site (Fig. 8A). However, as shown in Fig. 8A, one amino acid,
GIn260 is involved in 6-ring interactions with the same
compound. Docking studies for the control drug [Chloroquine
(Fig. 8B)] demonstrate four hydrogen bond interactions. At a
distance of 3.57 A and internal energy of -0.7 kcal/mol, a
hydrogen bond was discovered between the oxygen group
GIn289 and the C18 of the ligand. At a distance of 3.56 and
3.47 A, another hydrogen bond was found between GIn289 (-
1 kcal/mol) and Thrl73 (-0.9 kcal/mol), respectively.

Between 116292 and the 6-ring, a last pi-hydrogen bond was
discovered with a distance of 3.90 A and internal energy of -
1 kcal/mol. Fig. 9A and 9B shows docking interactions with
two different compounds (18 and Azithromycin). Docking
studies for the high active compound 18 is stabilized by
hydrophobic contacts with the residues Lys34, Pro38, Phe39,
Val33, and Leul29 as shown in Fig.8A, compound 18
exhibited one hydrogen bond interaction, which was detected
at a distance of 3.23 A and internal energy of -1.2 kcal/mol

between the N-group Glu52 amino acid. While

(Azithromycin (Fig. 8B)) shows hydrogen bond donor with
Ala79, Glul149, and Ser77 residues, with a distance of 7.03,
3.71, 3.53 A and internal energy of -0.8, -1.2, -0.6 kcal/mol,

respectively

O polar * sidechain acoeptor
O acidic =+ sidechain donor
O basic «-# packbone acceptor
(O greasy = backbone donor
proximity ligand
contour exposure

O solventresidue @@ arene-arene
metalcomplex  ©H areneH
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-~ metalfion contad

Orecepiﬂr
EXpOSLIE

Fig. 9: (A) Compound 18 and (B) Zithromax interact at the binding sites of the modelling protein in 2D docking poses. Compound 18

has a binding affinity of -7.9 kcal/mol. Zithromax (binding affinity -7.7 kcal/mol).

Pharmacokinetic Assessment
To assess the action of an active chemical in the human body
after administration, it is necessary to understand its

absorption, metabolism, excretion, and distribution (ADME),

commonly known as the drug's pharmacokinetic features
[51]. Drug-likeness and ADMET analysis were performed on
all of the drug-like compounds and standards in our study

(Table S4), with some of them adhering to Lipinski's five-
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criteria rule and Veber's two-criteria rule: molecular weight
(acceptable range: 500), number of hydrogen bond donors
(acceptable range: 5), number of hydrogen bond acceptors
(acceptable range: 10) and lipophilicity (expressed as LogP,
5), TPSA (acceptable range: 140).
Compound 18 and chloroquine both pass the Lipinski ROF

acceptable range:
and Veber ROT, except Azithromycin with a high molecular
weight of 748.98, hydrogen bond acceptor of 14, and total
polar surface area of 180.08 (Table S4). The fractional extent
of a medicine dosage that reaches the therapeutic site of
action is known as drug oral bioavailability, and it is
represented quantitatively as % F [52]. A probability score of
55% is acceptable, suggesting that it passed the rule of five.
Azithromycin scores 17%, but compound 18 and chloroquine
both score 55%, indicating good bioavailability (Table S4).
The synthetic accessibility score ranges from 1 (very easy) to
10 (extremely difficult). The results in Table S4 show that
compound 18 has a simpler synthesis method than the
standard drugs. A good result for the chemicals in the drug-
likeness with a positive value attribute indicates that the
molecule contains fragments that are commonly seen in
commercial medications. Except for compounds 5, 14, 16, 17,
and 24, all of the compounds exhibited a positive drug-
likeness value (Table S5). The drug score combines the
contributions of the partition coefficient, solubility,
molecular weight, drug-likeness, and toxicity risk into a
single meaningful practical value [53]. It could be used to
assess the medication candidate's potential. The chemical has
a better possibility of becoming a drug candidate when the
drug score is higher. The drug score of compound 18 is higher
than the two-reference drug (Table S5). This indicates that

compound 18 has medium risk values and could be employed

as a therapeutic molecule. For its mutagenic, tumorigenic,
reproductive effects, and irritating features, the toxicity risk
levels estimated using the Data warrior software are shown as
none, low, and high (Table S6). The none result represents
that the chemical is drug-compatible, while the low and high
values indicate the toxicity degree. Chloroquine shows high
for its mutagenic and irritant, while compound 18 and
Azithromycin show none to all the toxicity effects. The facial
skin, which defends the body from chemical and physical
threats, also keeps the essential medicine dose from reaching
a target organ [52]. Because all of the chemicals found in
Table S6 have log Kp negative values, the results reveal that
they are all poorly permeable to the skin. Gastrointestinal (GI)
absorption data are utilized to quantify the absorption and
distribution of these medications. Except for Azithromycin,
which has low absorption, all of the compounds are projected
to be efficiently absorbed (Table S6). For medications that
target the central nervous system, blood-brain (BBB)
partitioning and brain distribution are key features [54]. The
compounds examined are projected to be non-brain penetrant,
therefore adverse effects may be reduced at this level, except
for Chloroquine that has yes in BBB permeant (Table S7).
Cytochromes P450 are essential for metabolizing foreign
substances such as medicines [55]. The ability of drug-like
compounds to be eliminated from the body is determined by
the identification of metabolic sites. Table S7 lists some of
the most likely metabolic sites for Cytochromes P450.
Compound 18, which is the compound of interest was found
not to inhibit any of the CYP isoenzymes, which means that
this compound may have a lower risk of hepatic toxicity. The
Chloroquine drug inhibits three of the CYP isoenzymes as

shown in Table S7.

Table S4. Lipinski’s and Veber’s rule for ADME analysis of our inhibitors and control drugs.

Compounds Lipinski rule of five Veber’s filter %F / Synthetic Alerts
Ligand MW HBA | HBD | MLOGP | TPSA | Rotatable | Bioavailability | Synthetic
bonds Score Accessibility

2 205.26 | 2 2 1.13 80 3 0.55 1.96

3 178.19 |3 3 0.5 96.99 2 0.55 2.04

4 192.22 |3 2 0.82 85.99 3 0.55 2.16

5 208.2 4 3 0.1 126.42 | 3 0.55 2.19

6 180.18 | 3 2 1.49 76.76 2 0.55 2.14

7 21225 | 2 2 2.06 76.76 2 0.55 2.14
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8 196.64 | 2 2 1.65 76.76 2 0.55 2.03
9 196.64 |2 2 1.65 76.76 2 0.55 2.19
10 204.27 |2 2 1.98 76.76 3 0.55 2.07
11 192.22 |3 2 0.82 85.99 3 0.55 1.89
12 21225 |2 2 2.06 76.76 2 0.55 2.14
13 180.18 |3 2 1.49 76.76 2 0.55 1.97
14 241.09 |2 2 1.8 76.76 2 0.55 2.06
15 26831 |3 2 2.25 85.99 5 0.55 249
16 241.09 |2 2 1.8 76.76 2 0.55 2.28
17 257.09 |3 3 1.24 96.99 2 0.55 2.31
18 23829 |2 2 2.55 76.76 3 0.55 24
19 19419 |4 4 -0.04 117.22 | 2 0.55 1.96
20 178.19 |3 3 0.5 96.99 2 0.55 1.83
21 178.19 |3 3 0.5 96.99 2 0.55 1.84
22 192.22 |3 2 0.82 85.99 3 0.55 1.93
23 180.18 | 3 2 1.49 76.76 2 0.55 1.98
24 241.09 |2 2 1.8 76.76 2 0.55 2.27
25 231.08 |2 2 2.22 76.76 2 0.55 2.14
Chloroquine 31987 |2 1 3.2 28.16 8 0.55 2.76
Azithromycin (Zithromax) 748.98 | 14 5 -0.44 180.08 | 7 0.17 8.91

Table S5. Lipophilicity, drug score, pains alerts, and efficiency parameters of the 25 iminoguanidine derivatives and the control

drugs.
Cpd No. Druglikeness LE LLE LELP Drug Score PAINS alerts
2 2.7623 0.7956 6.9293 2.2244 0.46 0
3 1.411 0.89941 6.9953 1.6984 0.83 1
4 1.3443 0.82293 6.5946 2.1913 0.83 0
5 -3.8616 0.7592 7.3493 1.2536 0.16 0
6 0.25086 0.86765 6.2477 2.2752 0.69 0
7 1.5909 0.69922 5.0872 4.3873 0.48 0
8 1.5916 0.85446 5.6176 2.9016 0.77 0
9 1.5916 0.84906 5.5665 2.92 0.80 0
10 0.9808 0.73167 4.9397 4.1826 0.50 0
11 1.3443 0.77988 6.1553 2.3123 0.83 0
12 1.5909 0.67915 4.8531 4.517 0.30 0
13 0.25086 0.83221 5.912 2.3721 0.76 0
14 -0.19914 0.82881 5.2554 3.1352 0.57 0
15 0.94978 0.53667 4.6025 6.0025 0.38 0
16 -0.19914 0.82269 5.1974 3.1585 0.46 0
17 -0.37901 0.76135 5.5168 2.959 0.30 1
18 1.5909 0.59027 4.2122 5.9846 0.59 0
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19 1411 0.75662 6.5393 1.5621 0.62 0

20 1411 0.81247 6.1714 1.8802 0.86 1

21 1.411 0.81023 6.1502 1.8854 0.85 0

22 1.3443 0.75038 5.8543 2.4032 0.79 0

23 0.25086 0.80606 5.6642 2.4491 0.55 0

24 -0.19914 0.80411 5.0213 3.2315 0.48 0

25 1.5916 0.74494 45168 4.1417 0.70 0

Chloroquine 6.6327 0.34706 1.5565 11.552 0.25 0

Azithromycin 13.854 0.08837 1.6928 18.749 0.48 0

(Zithromax)

Table S6. Toxicity prediction of the 25 iminoguanidine derivatives and the control drugs

Copd No. Mutagenic Tumorigenic Reproductive Effective Irritant log Kp (cm/s)
1 none none none none | -
2 none high none none -7.13
3 none none none none -6.66
4 none none none none -6.9
5 none none none none -7.68
6 none none none none -6.99
7 none none none none -6.37
8 none none none none -6.54
9 none none none none -6.71
10 none none none none -6.4
11 none none none none -7.15
12 none high low none -6.37
13 none none none none -6.99
14 none none none none -6.94
15 none none none none -6.56
16 none none none none -6.94
17 high none none none -7.29
18 none none none none -6.26
19 none none none none -7.65
20 none none none none -7.3
21 none none none none -7.11
22 none none none none -6.9
23 none none none none -6.99
24 none none none none -6.94
25 none none none none -6.33
STD1 high none none high -4.96
STD2 none none none none -8.01

STD1: Chloroquine; STD2: Azithromycin (Zithromax)
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Table S7. Pharmacokinetics properties of the 25 iminoguanidine derivatives and the control drugs

Cpd Gl BBB Pgp CYP1A2 CYP2C19 CYP2C9 | CYP2D6 CYP3A4
No. absorption | permeant | substrate | inhibitor | inhibitor inhibitor | inhibitor | inhibitor
2 High No No No No No No No
3 High No No No No No No No
4 High No No No No No No No
5 High No Yes No No No No No
6 High No No No No No No No
7 High No No No No No No No
8 High No No No No No No No
9 High No No No No No No No
10 High No No No No No No No
11 High No No No No No No No
12 High No No No No No No No
13 High No No No No No No No
14 High No No Yes No No No No
15 High No No No No No No No
16 High No No Yes No No No No
17 High No No No No No No No
18 High No No No No No No No
19 High No No No No No No No
20 High No No No No No No No
21 High No No No No No No No
22 High No No No No No No No
23 High No No No No No No No
24 High No No No No No No No
25 High No No Yes No No No No
STD1 | High Yes No Yes No No Yes Yes
STD2 | Low No Yes No No No No No

STD1: Chloroquine; STD2: Azithromycin (Zithromax)

Molecular dynamics simulation analysis of Compound 18
An MD simulation for binding stability of the model P.
aeruginosa inhibitors protein with compound 18, was
performed and the results were analysed. The structural
stability of the complex was analysed using root-mean-square
deviation (RMSD), root means square fluctuation (RMSF),
and solvent accessible surface area (SASA) of the model. As
shown in Fig. 10 and 11A, the complex reaches the
equilibrium state after 1 ns. This finding implies that our

complex is stable during and after the simulation. In Fig. 10A,

little fluctuations are observed around 10 — 480 ps, but after
this time, the RMSD becomes stable until the end of the
simulation. The overall average RMSD value after 1ns MD
simulations is 3.65 A. The ligand RMSDs fluctuated with a
maximum value of 3.06 A at about 480 ps followed by more
stable interactions for the rest of the simulation. The analysis
of the RMSF of the complex is recorded in Fig. 10B. The
RMSF is a metric for determining how much an atom or a
residue moves over time [56,57]. A close look at the RMSF

plots (Fig. 10B) reveals adequate dynamic stability as well as
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the compactness of the ligand-receptor complexes. From the
figure, it has been found that the stability of the ligand-
receptor is almost right to the height range of the MD
simulation study, and it has provided information as a drug.
The involvement of each fragment of a molecule, in terms of
hydrophobicity, can be assessed by increasing the
corresponding atomic parameter by the degree of contact to
the surrounding solvent [57,58]. The contact degree is
naturally represented by the solvent-accessible surface area
(SASA). The solvent-accessible surface area (SASA)

calculation on the amino acid residues within the 1.4 sphere
of compound 18 was done to highlight the solvent
accessibility toward the simulated complex pocket. Surface
racer v5 [59]. was used to compute the complex's SASA. The
SASA for complex (Fig. 11A) has a total accessible surface
area of 1868.35 A2, polar accessible area of 5783.65 A2, and
non-polar accessible surface area of 5030.13 A2 as presented
in Table 3. It can be seen from the plot that the SASA values
for the compound 18 complex of ~14 - 14.6 A2 were rather

higher.

Table 3: The solvent-accessible surface area (SASA) for the simulated complex

The surface area of P. aeruginosa inhibitors protein with compound 18

Number of non-HOH

non-H atoms=1643
Probe radius=1.40

TOTAL ASA=10813.78

TOTAL MSA=0.00

Polar ASA=5783.65

Non-polar ASA=5030.13

Polar MSA=0. 00

Non-polar MSA=0.00

Total backbone ASA=1868.35

Total backbone MSA=0.00

Polar backbone ASA=1200.18

Non-polar backbone ASA=668.17

Polar backbone MSA=0.00

Non-polar backbone MSA=0.00

Polar side chain ASA=4583.47

Non-polar side chain ASA=4361.96

Polar side chain MSA=0.00

Non-polar side chain MSA=0.00

+charge ASA=1087.07

-charge ASA=1752.79

+charge MSA=0.00

-charge MSA=0.00

Structure contains 10 cavities

ASA = accessible surface area; MSA = molecular surface area

The ligand (compound 18) interacted strongly with the
protein, maintaining the majority of the interactions along
with the simulation (Fig. 11B). The ligand remained almost
in the same place: it started interacting with the residues
Phe39, Leul29, Leul?9, Lys34, Glu30, HSD26, Leu29,
Ser122, Val33, Leul24, and Gly121 of the receptor. At the
end of the simulation, the interactions with Lys132, Pro38,
Phe189, Arg80, and Glu52 were lost, but new interactions
with HSD26, Leu29, Leul24, and Gly121 appeared, with the

ligand drifting slightly from the subsurface to a position

buried outside the protein. However, there were almost no
structural changes on the protein (Fig. 10B).

Conclusion

Computer-aided drug design (CADD) is a burgeoning field of
study. In both academia and industry, computational methods
are indispensable and creditable tools that unquestionably
speed up the discovery of lead-hit drug. The computational
and theoretical interactions of 25 iminoguanidine derivatives

with the nucleocapsid phosphoprotein and heme oxygenase
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showing protein-ligand hydrogen bond interaction with residue as Leu124 with arene-H 9nteraction with Glu30.

structures were studied in this study. Genetic function
approximation-multiple linear regression (GFA-MLR) was
used to construct a quantitative structure-activity relationship
model of iminoguanidine derivatives against Pseudomonas
aeruginosa. The GFA-MLR had a significantly predictive
capability with greater power. The results show that the
model proposed in this research can select autocorrelation and
charged partial surface area descriptors (AATS8p and TPSA),
which are adequately rich in topological information to

encrypt structural landscapes, could be used with other

signifiers in the development of predictive QSAR models.
The QSAR model was able to show stability and predictive
power, confirmed by fittings criteria, internal validation
criteria, and external validation criteria. After a successful
homology modelling with the query sequences and templates,
we came through the key amino acids and the number of
hydrogen bonds required to select compounds with inhibitory
potential for this Pseudomonas aeruginosa and SARS-CoV-
2, based on azithromycin and chloroquine drugs as reference.

molecular docking studies results on the modelled receptors
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indicated that the interaction results of compound 18 showed
more type and a better interaction compared to the reference
drugs. To investigate their activities following the standard,
compound 18 and the reference drugs were subjected to in
silico assessments of absorption, distribution, metabolism,
and excretion. In comparison to the research series and
reference drugs, these novel lead compounds 18 have better
pharmacological characteristics. RMSD, RMSF, and SASA
analyses were used in a molecular dynamics simulation
investigation to demonstrate their binding stability with the
individual proteins throughout the simulation timeline. These
findings were crucial in the development of novel SARS-
CoV-2 and P. aeruginosa with high potential efficacy. The
findings of this study can be exploited to produce effective
inhibitors for SARS-CoV-2 and P. aeruginosa. These ligands
(compound 18), we believe, have the potential to be

developed as drugs.

List of Abbreviations

QSAR: Quantitative structure-activity relationship; GFA:
Genetic function approximation; MLR: Multiple linear
regression; Protein data bank; MDS: Molecular dynamics
simulation; ADMET: Absorption, Distribution, Mechanism,
Excretion, and Toxicity; PDB: Protein Data Bank; ROF: Rule
of five; ROT: Rule of two; RMSD: Root mean square
deviation; RMSF: Root mean square fluctuation; %F: Oral
bioavailability; SASA: Solvent accessible surface area; BBB:

blood-brain barrier; GI: Gastrointestinal
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