(ISSN: 2770-8292) Open Access

Research Article Volume 2 – Issue 1

The Fc Receptor Gene Asterias Rubens: Bioinformatic Data

Michel Leclerc*

Immunology of Invertebrates, Orléans University (FRANCE)

*Corresponding author: Michel Leclerc, Immunology of Invertebrates, Orléans University (FRANCE)

Received date: 25 January, 2022 | Accepted date: 5 February, 2022 | Published date: 8 February, 2022

Citation: Leclerc M. (2022) The Fc Receptor Gene Asterias Rubens: Bioinformatic Data. J Virol Viral Dis 2(1): doi

https://doi.org/10.54289/JVVD2200105

Copyright: © 2022 Leclerc M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In the present report, Asterias rubens Fc DNA Sequence was analysed from its transcriptome in bioinformatics; Identities occurred with other sea stars such as Patiria miniata and specially with mammals' proteins. Identities with Fc receptor mammal IGE was found.

Introduction:

The aim of this work is to analyse Fc DNA sequence which was discovered in 2016 [1] from

Starting material (dna) sequence in 5'-3':

TCCATTAGGGCAATGAGTGGGACTGCGCGGCTTGG
CACAGATCATCCCTTTTCTATCACGACACCTCGAGT
CTTTCCACTTGCCGTTGCTAATCTGTAATGCCACAC
AGTTATTCTCCAATGATTCGACTCCAGACAGCTCAG
TTTGCTCTTCTTCGATGAAGTTCGTGTAGTTGACGG
GGGAATCGTTTGACCATTTCCAATCGCTTTCGTTGT
GTGTATCATGGAGCCCGATCCACACGTCCCTGTCA
ATTAGGTCGGTAAGAAAATCATTAATTTCTTGGTCA
GTGATGGCGACCAGCCTAGCGCCGTCGTATTTAGT
GCACTTCTGTTCAGCATCGACCCAGCGTGCTACATC
GTCTGGAATCCAGAAGCATTCATCACGGAAGAGAT
GGCCGTTGTTTAGGCAGTACTGTGGTTGACCAC

GTACTGTTTGAAGAAGATGAGCTGACCCAATAACC
ATCATCACCAATGGAATCATTGTGAATTTGTTT
GAGATACGTCCGATACGTCCGTCCGTAGATGAAAA
AACTGCCGAAGTCTCTCACATAATTCCACCAGGCA
TTGTTGATGCCTTGCTGCTCTATGGTTGATGCTTGG
TGGCAGTCCACGAAAGAATGTGCAGTTAGGGAAAG
TCCAGCTTGTATATCTC

Bioinformatics data were performed according Marchler-Bauer et al [2-4].

Results:

 Blastn original sequence: Data base: Standard data bases (nr mainly.)

Optimization: we used highly similar sequences (mega blast) We recall that molecule type was dna; the query length of 654 2 sequences were selected as shown in the **table1**: significant alignments were found.

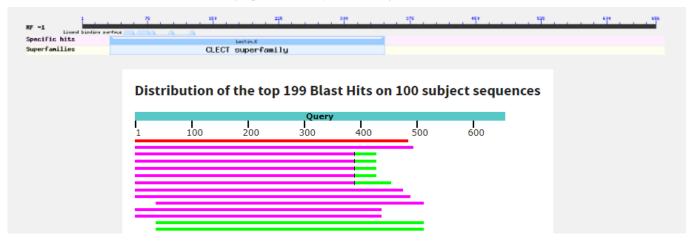
Table 1: Significant aligments from A. rubens

Description	Scientific name	Max	Total	Query	E.	Per.	Acc Len	Accession
		score	score	cover	Value	Ident		
Predicted: Asterias rubens macrophage	Asterias rubens	1197	1197	100%	0.0	99.69%	1735	XM-
mannose receptor 1 like								033776291.
(LOC117293835) mRNA								1
Asterias rubens genome assembly,	Asterias rubens	418	1162	96%	4e-112	10.00%	21693562	LR699099.
chromosome 8								1

The corresponding graphic summary is the following:

Distribution of the top 5 Blast Hits on 2 subject sequences

2. BlastX original sequence:


The query length is 654in this DNA molecule: non-redundant protein sequences were used as Database (nr).

Sequences producing significant alignments: more than 100 sequences were resumed in **Table 2**.

Table 2: Aligment comparisons between Asterias rubens and Patiria miniata (Asterids-Echinodermata)

Description	Scientific	Max	Total	Query	E.	Per.	Acc	Accession
	name	score	score	cover	Value	Ident	Len	
Macrophage mannose receptor 1-like	Asterias	342	342	73%	1e-112	99.38%	510	XP_033632182.1
[Asteria rubens]	rubens							
uncharacterized protein LOC119734023	Patiria	130	203	75%	3e-31	39.18%	529	XP_038063329.1
isoform X3 [Patiria miniata]	miniata							
Macrophage mannose receptor 1-like	Patiria	129	201	65%	1e-30	46.32%	537	XP_038063328.1
isoform X2 [Patiria miniata]	miniata							
Macrophage mannose receptor 1-like	Patiria	129	201	65%	2e-30	43.48%	547	XP_038063326.1
isoform X1 [Patiria miniata]	miniata							

A graphic summary is following as seen below:

3) Putative conserved domains have been detected as shown below:

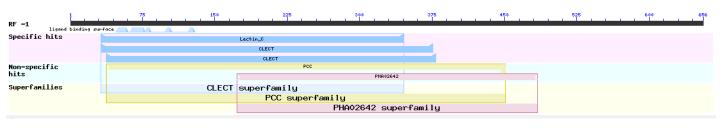


Table 3: Fc gene identities between sea star and mammals

Name	Accession	Description	Interval	E-value
Lectin-C	Pfam00059	Lectin C-type domain: This family includes both ling and short form of C-type.	31-354	2.33e-19
CLECT	Cd00037	CLECT: C-type lectin (CTL)/C-type lectin-like (CTLD) domain; protein domains		946e-18
		homologous to the carbohydrate-recognition domains (CRDs) of the C-type lectins.		
		This group is chiefly comprised of eukaryotic CTLDs, but contains some, as yet		
		functionally uncharacterized, bacterial CTLDs. Many CTLDs are calcium-dependent		
		carbohydrate binding modules; other CTLDs bind protein ligands, lipids, and inorganic		
		surfaces, including CaCO3 and ice. Animal C-type lectins are involved in such		
		functions as extracellular matrix organization, endocytosis, complement activation,		
		pathogen recognition, and cell-cell interactions. For example: mannose-binding lectin		
		and lung surfactant proteins A and D bind carbohydrates on surfaces (e.g, pathogens,		
		allergens, necrotic, and apoptotic cells) and mediate functions associated with killing		
		and phagocytosis; P (platlet)-, E (endothelial)-, and L (leukocyte)- selectins (sels)		
		mediate the initial attachment, tethering, and rolling of lymphocytes on inflamed		
		vascular walls enabling subsequent lymphocyte adhesion and transmigration. CTLDs		
		may bind a variety of carbohydrate ligands including mannose, N-acetylglucosamine,		
		galactose, N-acetylgalactosamine, and fucose. Several CTLDs bind to protein ligands,		
		and only some of these binding interactions are Ca2+-dependent, including the CTLDs		
		of Coagulation Factors IX/X (IX/X) and Von Willebrand Factor (VWF) binding		
		proteins, and natural killer cell receptors. C-type lectins, such as lithostathine, and some		
		type II antifreeze glycoproteins function in a Ca2+-independent manner to bind		
		inorganic surfaces. Many proteins in this group contain a single CTLD; these CTLDs		
		associate with each other through several different surfaces to form dimers, trimers, or		
		tetramers, from which ligand-binding sites project in different orientations. Various		
		vertebrate type 1 transmembrane proteins including macrophage mannose receptor,		
		endo180, phospholipase A2 receptor, and dendritic and epithelial cell receptor		
		(DEC205) have extracellular domains containing 8 or more CTLDs; these CTLDs		
		remain in the parent model. In some members (IX/X and VWF binding proteins), a loop		
		extends to the adjoining domain to form a loop-swapped dimer. A similar conformation		
		is seen in the macrophage mannose receptor CRD4's putative non-sugar bound form of		
		the domain in the acid environment of the endosome. Lineage specific expansions of		
		CTLDs have occurred in several animal lineages including Drosophila melanogaster		
		and Caenorhabditis elegans; these CTLDs also remain in the parent model.		
CLECT	Smart00034	C-type lectin (CTL) or carbohydrate-recognition domain (CRD); Many of these	37-378	6.87e-15
		domain's function as calcium-dependent carbohydrate binding modules.		
PCC	TIGR00864	polycystin cation channel protein; The Polycystin Cation Channel (PCC) Family (TC	37-450	5.61e-08

Journal of Virology and Viral Diseases

\wedge

		1.A.5) Polycystin is a huge protein of 4303aas. Its repeated leucine rich (LRR) segment is found in many proteins. It contains 16 polycystic kidney disease (PKD) domains, one		
		LDL-receptor class A domain, one C-type lectin family domain, and 16-18 putative		
		TMSs in positions between residues 2200 and 4100. Polycystin-L has been shown to		
		be a cation (Na+, K+ and Ca2+) channel that is activated by Ca2+. Two members of		
		the PCC family (polycystin 1 and 2) are mutated in autosomal dominant polycystic		
		kidney disease, and polycystin-L is deleted in mice with renal and retinal defects. Note:		
		this model is restricted to the amino half.		
PHA02642	PHA02642	type lectin-like protein; Provisional.	172-483	5.00e-06

The Table 3 represents the identities between Asterias rubens Fc receptor and Mammal IgE Fc receptor:

>Fc fragment of IgE receptor II [Rhinolophus ferrumequinum].

Sequence ID: KAF6306204.1 Length: 290

Range 1: 169 to 284

Score:73.2 bits (178), Expect:3e-11,

Method: Compositional matrix adjust,

Identities: 42/119(35%), Positives: 69/119(57%),

Gaps:5/119(4%).

Query 387

FRDECFWIPDDVARWVDAEQKCTKYDGARLVAIT **DOEINDFLTDLIDR-DVWIGLHDTHN 211**

F++C+++RW+AC+KGRLV+IQEDFLIRWIGL D +

Sbjct 169 FQRKCYYFGEGAKRWIQARLACSKLQG-RLVSIHSQEEQDFLAKSIHRRGSWIGLRDLNI 227

ESDWKWSNDSPVNYTNFIEEEQTELSGVESLENNC VALQISNGKWKDSRCRDR-KGMIC 37

E D+ W +++P++Y+N+ E + G L +CV + +S+G+W D+ C ++ G +C

228 EGDFVWMDENPLDYSNWRPGEPND-Sbjct **GGERGLGEDCVMM-**

LSSGQWNDAFCGNQLDGWVC 284.

Conclusion:

We retain mainly identities between sea star Asterias rubens Fc receptor and mammal Fc receptor occurs as shown in table-3. Many similitudes have also been observed between A.rubens Fc gene and lectins as CTL. Analogies with macrophage mannose receptor1-like from sea stars were also found. It is interesting to note that mannose sugar binds lectins. We are not surprised to find both.

The most interesting remains, from our side, the identities with mammal Fc receptor genes in conclusion.

References:

- 1. Leclerc M, et al. (2016) Evidence of low affinity immunoglobulin epsilon Fc receptor gene in an invertebrate: The sea star Asterias rubens, Clin. Res. Trials. 2(2): 152-153.
- 2. Marchler-Bauer A, et al. (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45(D1): 200-203.
- 3. Marchler-Bauer A, et al. (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res. 43(D): 222-226.
- 4. Marchler-Bauer A, et al. (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39(D): 225-229.