

Research Article Volume 2 – Issue 1

Ophuirid Ophiocomina Nigra HLA-E Gene Synthesis in PUC-GW-KAN Plasmid or HLA-E Echinodermata Gene Biosynthesis « De Novo » in E. Coli Sensu Lato Plasmid

Michel Leclerc*

Immunology of Invertebrates, 556 Rue Isabelle Romée, 45640 Sandillon France

*Corresponding author: Michel Leclerc, Immunology of Invertebrates, 556 Rue Isabelle Romée, 45640 Sandillon France

Received date: 10 January, 2022 | Accepted date: 19 January, 2022 | Published date: 21 January, 2022

Citation: Leclerc M. (2022) Ophuirid Ophiocomina Nigra HLA-E Gene Synthesis in PUC-GW-KAN Plasmid or HLA-E Echinodermata Gene Biosynthesis « De Novo » in E. Coli Sensu Lato Plasmid. J Virol Viral Dis 2(1): doi https://doi.org/10.54289/JVVD2200101

Copyright: © 2022 Leclerc M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

HLA-E (Class 1) is a MHC gene which has been isolated in 2020, in our laboratory. We show now its biosynthèses « de novo » in a PUC-GW-KAN plasmid. Such experiment was performed with the Ophiocomina nigra IGKappa gene one year ago.

Introduction:

We have isolated recently MHC genes in Echinodermata [1] in 3 classes: The Ophuirids, the Crinoïds, the Asterids. At that time, we decided to synthetize one of these genes: The well-known HLA-E one in a PUC-GW-KAN plasmid (Yan Li gift).

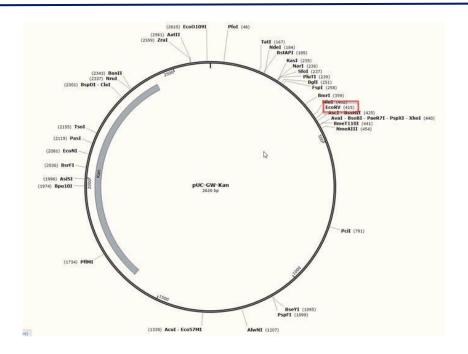
Methods:

We operate according to the following method [2]. It was resumed in 4 parts:

- 1. Synthesis of oligonucleotides with overlapping segments in sense and antisense direction.
- Assembly of the oligonucleotides into a double stranded DNA, using a poly chain assembly method (PCA).
- For larger constructs, the sequence is split into smaller, intermediate fragments, to facilitate synthesis. Once the intermediated fragments have been obtained with correct sequence, they are assembled into the full-length sequence.
- 4. Cloning into the linearized vector by either

recombination or ligation-based cloning, mostly performed within the same step as full-length sequence assembly.

Regarding the restriction site, which was used for cloning, construct was cloned into vector pUC-GW by using the unique EcoRV restriction site. Please find below the primers used for sequencing.


M13F-77	GATGTGCTGCAAGGCGATTA
M13R-88	TTATGCTTCCGGCTCGTATG
U-SEQ4883	CCTCCAATCGGGTAACTC

Results:

1) Plasmid map:

The construct appears below

- 3) Synthetized sequence in 5'-3': TGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCG

4) Blastn original sequence/ synthetized sequence
The **table 1:** Resumes mainly the identities and the e-value between these 2 precedent sequences. Chromatograms were also performed:

Table 1. Co	omparisons h	etween original	sequence and	synthetized one.
Table 1. C	OHIDALISOHS D	ICLWCCH OHEHIAI	Seducite and	SVIIIIICHZEU OHC.

Size Seq1	Size Seq2	Max score	Total score	Query cover	E. Value	Per. Ident	Acc Len
281	281	520	520	100%	7e-152	100%	934

Conclusion:

We conclude our experiment is valid when compared to table 1. Furthermore, we assert, it is the first time such discovery:

- a) MHC Genes in Echinodermata (Invertebrates) were foundb) biosynthesis of HLA-E echinodermata gene in a PUC-

ACQUIRE PUBLICATIONS Volume 2 Issue 1

GW-KAN plasmid was performed.

References:

- Leclerc M. (2020) Evidence of MHC Class I and Class II Genes in Echinodermata. 2(1): 59-61.
- Leclerc M. (2021) Biosynthesis « De Novo » of the Ophuirid Ophiocomina Nigra Igkappa Gene.1(1): 1-4.